×

Null flows and null functions on \(\mathbb R\). (English) Zbl 1092.37005

Summary: We introduce the notion of null flows via sequence entropy. We study the structure of minimal null flows and show that such a flow is almost automorphic and uniquely ergodic. Moreover, minimal null functions on \(\mathbb R\) are defined and investigated. At the same time, we show that the set of almost automorphic flows strictly contains the set of minimal null flows which strictly contains the set of almost-periodic flows.

MSC:

37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
37B40 Topological entropy
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
Full Text: DOI

References:

[1] Auslander, J. (1988). Minimal Flows and their Extensions, North-Holland Mathematics Studies, Vol. 153, North-Holland, Amsterdam. · Zbl 0654.54027
[2] Blanchard F. (1993). A disjointness theorem involving topological entropy. Bull. Soc. Math. France 121, 465–478 · Zbl 0814.54027
[3] Bochner, S. (1955–1956). Curvature and Betti Numbers in Real and Complex vector Bundles, Universitá e Politecuico di Toorino, Rendiconti del Seminario matematico, 15. · Zbl 0068.28402
[4] Flor P. (1967). Rhythmische Abbildungen abelscher Gruppen. II. Zeit. Wahrsch. 7, 17–28 · Zbl 0157.36403 · doi:10.1007/BF00532094
[5] Furstenberg, H. (1981). Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press. · Zbl 0459.28023
[6] Furstenberg H., Weiss B. (1989). On almost 1-1 extensions. Israel J. Math. 65(3): 311–322 · Zbl 0676.28010 · doi:10.1007/BF02764869
[7] Goodman T.N.T. (1974). Topological sequence entropy. Proc. London Math. Soc. 29(3): 331–350 · Zbl 0293.54043 · doi:10.1112/plms/s3-29.2.331
[8] Huang W., Li S.M., Shao S., Ye X.D. (2003). Null systems and sequence entropy pairs. Ergod. Theor. Dyn. Sys. 23, 1505–1523 · Zbl 1134.37308 · doi:10.1017/S0143385702001724
[9] Markley N.G., Paul E.M. (1979). Almost automorphic symbolic minimal sets without unique ergodicity. Israel J. Math. 34(3): 259–272 · Zbl 0463.54039 · doi:10.1007/BF02760887
[10] Phelps R.R. (2001). Lectures on Choquet’s theorem. Second Edition, Lecture Notes in Mathematics, 1757. Springer-Verlag, Berlin · Zbl 0997.46005
[11] Sell, G. R. (1971). Topological Dynamics and Ordinary Differential Equations, Van Norstand Reinhold Company. · Zbl 0212.29202
[12] Shen, W., and Yi, Y. (1998). Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc. 136. · Zbl 0913.58051
[13] Terras R. (1973). Almost automorphic functions on topological groups. Indiana Univ. Math. J. 21, 759–773 · Zbl 0252.22004 · doi:10.1512/iumj.1972.21.21060
[14] Terras R. (1973). On almost periodic and almost automorphic differences of functions. Duke Math. J. 40, 81–91 · Zbl 0273.43013 · doi:10.1215/S0012-7094-73-04009-X
[15] Veech W.A. (1965). Almost automorphic functions on groups. Amer. J. Math. 87, 719–751 · Zbl 0137.05803 · doi:10.2307/2373071
[16] Veech W.A. (1970). Point-distal flows. Amer. J. Math. 92, 205–242 · Zbl 0202.55503 · doi:10.2307/2373504
[17] Veech W.A. (1977). Topological dynamics. Bull. Amer. Math. Soc. 83(5): 775–830 · Zbl 0384.28018 · doi:10.1090/S0002-9904-1977-14319-X
[18] Jaap van der Woude (1985). Characterizations of (H)PI extensions. Pacific J. of Math. 120, 453–467 · Zbl 0587.54058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.