×

Some sufficient conditions for biholomorphic convex mappings on \(B_p^n\). (English) Zbl 1092.32012

Let \(\mathbb{C}^{n}\) be the space of \(n\)-complex variables \(z=(z_{1},\dots,z_{n})\) with the usual inner product \(\langle z,w\rangle= \sum_{j=1}^{n}z_{j} \overline{w}_{j}\), \(w=(w_{1},\dots ,w_{n})\in\mathbb{C}^{n}\). Consider the norm \(\| z\| _{p}= (\sum_{j=1}^{n} | z_{j}| ^{p})^{1/p}\), \(z\in \mathbb{C}^{n}\), \(p>1\) and let \(B_{p}^{n}= \{z\in\mathbb{C}^{n}:\| z\| _{p}<1\}\) be the Reinhardt domain. Let \(H(B_{p}^{n})\) be the class of holomorphic mappings from \(B_{p}^{n}\) into \(\mathbb{C}^{n}\). A mapping \(f\in H(B_{p}^{n})\) is said to be local biholomorphic in \(B_{p}^{n}\) if \(f\) has a local inverse at each point \(z\in B_{p}^{n}\). A biholomorphic convex mapping on \(B_{p}^{n}\) is a biholomorphic mapping on \(B_{p}^{n}\) such that \(f(B_{p}^{n})\) is a convex domain in \(\mathbb{C}^{n}\). Let \(K(B_{p}^{n})\) denote the class of all biholomorphic convex mappings \(f\) on \(B_{p}^{n}\) with \(f(0)=0\), \(Df(0)=I\).
In the paper the authors prove some sufficient conditions for a biholomorphic mapping to be in the class \(K(B_{p}^{n})\). Some concrete biholomorphic convex mappings on \(B_{p}^{n}\) are constructed.

MSC:

32H02 Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables
Full Text: DOI

References:

[1] Gong, S., Convex and Starlike Mappings in Several Complex Variables (1998), Science Press/Kluwer Academic Publishers · Zbl 0926.32007
[2] Gong, S.; Liu, T., On Roper-Suffridge extension operator, J. Anal. Math., 88, 397-404 (2002) · Zbl 1034.32001
[3] Gong, S.; Liu, T., The generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 284, 425-434 (2003) · Zbl 1031.32002
[4] Gong, S.; Wang, S.; Yu, Q., Biholomorphic convex mappings of ball in \(C^n\), Pacific J. Math., 161, 287-306 (1993) · Zbl 0788.32017
[5] Hamada, H.; Kohr, G., Simple criterions for strongly starlikeness and starlikeness of certain order, Math. Nachr., 254-255, 165-171 (2003) · Zbl 1029.32005
[6] Liu, T.; Zhang, W., Homogeneous expansions of normalized biholomorphic convex mappings over \(B^p\), Sci. China Ser. A, 40, 799-806 (1997) · Zbl 0890.32011
[7] Miller, S. S.; Mocanu, P. T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65, 289-305 (1978) · Zbl 0367.34005
[8] Roper, K. A.; Suffridge, T. J., Convex mappings on the unit ball of \(C^n\), J. Anal. Math., 65, 333-347 (1995) · Zbl 0846.32006
[9] Roper, K. A.; Suffridge, T. J., Convexity properties of holomorphic mappings in \(C^n\), Trans. Amer. Math. Soc., 351, 1803-1833 (1999) · Zbl 0926.32012
[10] Taylor, A. E.; Lay, D. C., Introduction to Functional Analysis (1980), Wiley: Wiley New York · Zbl 0501.46003
[11] Zhu, Y., Biholomorphic convex mappings on \(B_p\), Chinese Ann. Math. Ser. A. Chinese Ann. Math. Ser. A, Chinese J. Contemp. Math., 19, 271-276 (1998), (in Chinese); translation in
[12] Zhu, Y., Biholomorphic convex mappings on \(B_p^n\), Chinese Ann. Math. Ser. A, 24, 269-278 (2003), (in Chinese) · Zbl 1045.32018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.