×

On a class of singular biharmonic problems involving critical exponents. (English) Zbl 1091.35023

Summary: This paper deals with singular biharmonic problems of the form \[ \begin{cases} \Delta^2u+V(x)|u|^{q-1}u=|u|^{2^*-2}u,&\text{in}\;\Omega\subset\mathbb R^N,\\u\in D_o^{2,2}(\Omega),&N\geq5,\end{cases}\tag{P} \] where \(1\leq q<2^*-1, 2^*=2N/(N-4)\) is the critical Sobolev exponent, \(\Delta^2\) denotes the biharmonic operator, \(\Omega\) is an open domain (not necessarily bounded, it may be equal to \(\mathbb R^N\)) and \(V\) is a potential that changes sign in \(\Omega\) with some points of singularities in \(\Omega\). Some results on the existence of solutions are obtained by combining a mountain pass theorem and the Hardy inequality with some arguments used by H. Brézis and L. Nirenberg [Commun. Pure Appl. Math. 36, No. 4, 437–477 (1983; Zbl 0541.35029)]

MSC:

35J40 Boundary value problems for higher-order elliptic equations
35B33 Critical exponents in context of PDEs
35J60 Nonlinear elliptic equations
47J30 Variational methods involving nonlinear operators

Citations:

Zbl 0541.35029
Full Text: DOI

References:

[1] Ambrosetti, A.; Rabinowitz, P., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[2] Benci, V.; Cerami, G., Existence of positive solutions of the equation −\( Δu +a(x)u=u^{(N+2)/(N−2)}\) in \(R^N\), J. Funct. Anal., 88, 90-117 (1990) · Zbl 0705.35042
[3] Ben-Naoum, A. K.; Troestler, C.; Willem, M., Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Anal., 26, 823-833 (1996) · Zbl 0851.49004
[4] Bernis, F.; Garcia Azorero, J.; Peral, I., Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Adv. Differential Equations, 2, 219-240 (1996) · Zbl 0841.35036
[5] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence functional, Proc. Amer. Math. Soc., 88, 486-490 (1983) · Zbl 0526.46037
[6] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 437-477 (1983) · Zbl 0541.35029
[7] Caffarelli, L.; Kohn, R.; Nirenberg, L., First order interpolation inequality with weights, Compositio Math., 53, 259-275 (1984) · Zbl 0563.46024
[8] Carrião, P. C.; Miyagaki, O. H.; Pádua, J. C., Radialsolutions of elliptic equations with critical exponents in \(R^N\), Differential Integral Equations, 11, 61-68 (1998) · Zbl 1042.35011
[9] J. Chabrowski, J.M. do Ó, On some fourth order semilinear elliptic problems in \(R^N\); J. Chabrowski, J.M. do Ó, On some fourth order semilinear elliptic problems in \(R^N\)
[10] Dold, J.; Galaktionov, V. A.; Lacey, A. A.; Vásquez, J. L., Rate of approach to a singular steady state in quasilinear reaction-diffusion equations, Ann. Sci. Norm. Sup. Pisa, 26, 663-687 (1998) · Zbl 0920.35080
[11] Egnell, H., Existence results for some quasilinear elliptic equations, (Berestycki, H.; Coron, J. M.; Ekeland, I., Variational Methods: Proc. of a Conference, Paris, June 1988 (1990), Birkhäuser), 61-76 · Zbl 0735.35053
[12] Garcia Azorero, J.; Peral, I., Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323, 877-895 (1991) · Zbl 0729.35051
[13] J. Garcia Azorero, I. Peral, Hardy inequalities and some critical elliptic and parabolic problems, Preprint (1997); J. Garcia Azorero, I. Peral, Hardy inequalities and some critical elliptic and parabolic problems, Preprint (1997)
[14] Ghoussoub, N.; Yuan, C., Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352, 3703-3743 (2000) · Zbl 0956.35056
[15] Jannelli, E., The role played by space dimension in elliptic critical problems, J. Differential Equations, 156, 407-426 (1999) · Zbl 0938.35058
[16] Lions, P. L., The concentration compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoamericana, 1, 145-201 (1985) · Zbl 0704.49005
[17] Lions, P. L., The concentration compactness principle in the calculus of variations. The limit case, Part 2, Rev. Mat. Iberoamericana, 1, 45-119 (1985) · Zbl 0704.49006
[18] Noussair, E. S.; Swanson, C. A.; Yang, J., Quasilinear elliptic problems with critical exponents, Nonlinear Anal., 20, 285-301 (1993) · Zbl 0785.35042
[19] Noussair, E. S.; Swanson, C. A.; Yang, J., Critical semilinear biharmonic equations in \(R^N\), Proc. Roy. Soc. Edinburgh, 121A, 139-148 (1992) · Zbl 0779.35044
[20] Pan, X., Positive solutions of the elliptic equations \(Δu +u^{(N+2)/(N−2)}+K(x)u^{q\) · Zbl 0801.35025
[21] Pohozaev, S. L., Eigenfunctions for the equation \(Δu + λf (u)=0\), Soviet Math. Dokl., 6, 1408-1411 (1965) · Zbl 0141.30202
[22] Szulkin, A.; Willem, M., Eigenvalue problems with indefinite weight, Studia Math., 135, 191-201 (1999) · Zbl 0931.35121
[23] Smets, D., A concentration-compactness lemma with applications to singular eigenvalue problem, J. Funct. Anal., 167, 463-480 (1999) · Zbl 0942.35127
[24] Terracini, S., On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1, 241-264 (1996) · Zbl 0847.35045
[25] Tertikas, A., Critical phenomena in linear elliptic problems, J. Funct. Anal., 154, 42-66 (1998) · Zbl 0920.35044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.