×

Bifurcations and oscillatory behavior in a class of competitive cellular neural networks. (English) Zbl 1090.37565

Summary: When the neuron interconnection matrix is symmetric, the standard cellular neural networks (CNNs) introduced by Chua and Yang are known to be completely stable, that is, each trajectory converges towards some stationary state. In this paper it is shown that the interconnection symmetry, though ensuring complete stability, is not in the general case sufficient to guarantee that complete stability is robust with respect to sufficiently small perturbations of the interconnections. To this end, a class of third-order CNNs with competitive (inhibitory) interconnections between distinct neurons is introduced. The analysis of the dynamical behavior shows that such a class contains nonsymmetric CNNs exhibiting persistent oscillations, even if the interconnection matrix is arbitrarily close to some symmetric matrix. This result is of obvious relevance in view of CNN’s implementation, since perfect interconnection symmetry in unattainable in hardware (e.g., VLSI) realizations. More insight on the behavior of the CNNs here introduced is gained by discussing the analogies with the dynamics of the May and Leonard model of the voting paradox, a special Volterra-Lotka model of three competing species. Finally, it is shown that the results in this paper can also be viewed as an extension of previous results by Zou and Nossek for a two-cell CNN with opposite-sign interconnections between distinct neurons. Such an extension has a significant interpretation in the framework of a general theorem by Smale for competitive dynamical systems.

MSC:

37N25 Dynamical systems in biology
34C23 Bifurcation theory for ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
37G99 Local and nonlocal bifurcation theory for dynamical systems
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] DOI: 10.1142/S0218127497001618 · Zbl 0901.68138 · doi:10.1142/S0218127497001618
[2] DOI: 10.1109/31.101272 · doi:10.1109/31.101272
[3] DOI: 10.1002/cta.4490200506 · Zbl 0775.92003 · doi:10.1002/cta.4490200506
[4] DOI: 10.1109/31.7600 · Zbl 0663.94022 · doi:10.1109/31.7600
[5] DOI: 10.1109/31.7601 · doi:10.1109/31.7601
[6] DOI: 10.1109/TSMC.1983.6313075 · Zbl 0553.92009 · doi:10.1109/TSMC.1983.6313075
[7] Fantacci R., IEEE Trans. Circuits Syst. pp 1457– (2000)
[8] DOI: 10.1007/BF01696240 · doi:10.1007/BF01696240
[9] DOI: 10.1109/81.401145 · Zbl 0849.68105 · doi:10.1109/81.401145
[10] DOI: 10.1109/81.503261 · doi:10.1109/81.503261
[11] DOI: 10.1016/0022-5193(78)90182-0 · doi:10.1016/0022-5193(78)90182-0
[12] DOI: 10.1090/S0273-0979-1984-15236-4 · Zbl 0541.34026 · doi:10.1090/S0273-0979-1984-15236-4
[13] DOI: 10.1016/0893-6080(89)90018-X · doi:10.1016/0893-6080(89)90018-X
[14] DOI: 10.1073/pnas.81.10.3088 · Zbl 1371.92015 · doi:10.1073/pnas.81.10.3088
[15] DOI: 10.1126/science.3755256 · doi:10.1126/science.3755256
[16] DOI: 10.1109/31.41297 · Zbl 0689.94004 · doi:10.1109/31.41297
[17] DOI: 10.1137/0129022 · Zbl 0314.92008 · doi:10.1137/0129022
[18] DOI: 10.1109/82.222817 · Zbl 0800.92049 · doi:10.1109/82.222817
[19] DOI: 10.1109/81.232580 · Zbl 0800.92045 · doi:10.1109/81.232580
[20] DOI: 10.1109/81.704820 · Zbl 0951.92002 · doi:10.1109/81.704820
[21] DOI: 10.1007/BF00307854 · Zbl 0344.92009 · doi:10.1007/BF00307854
[22] DOI: 10.1109/81.704819 · Zbl 0951.92001 · doi:10.1109/81.704819
[23] DOI: 10.1109/72.238320 · doi:10.1109/72.238320
[24] DOI: 10.1109/81.260216 · Zbl 0843.93049 · doi:10.1109/81.260216
[25] Wu C. W., IEEE Trans. Circuits Syst. pp 370– (1997)
[26] DOI: 10.1109/81.251825 · Zbl 0847.68100 · doi:10.1109/81.251825
[27] DOI: 10.1109/81.222797 · Zbl 0782.92003 · doi:10.1109/81.222797
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.