×

Boltzmann diffusive limit beyond the Navier-Stokes approximation. (English) Zbl 1089.76052

Summary: Given a normalized Maxwellian \(\mu\) and \(n\geq 1\), we establish the global-in-time validity of a diffusive expansion \[ F^\varepsilon(t,x,v)= \mu+ \sqrt{\mu} \{\varepsilon f_1(t,x,v)+ \varepsilon^2 f_2(t,x,v)+\cdots+ \varepsilon^n f_n^\varepsilon (t,x,v)\}, \] for a solution \(F^\varepsilon\) to the rescaled Boltzmann equation (diffusive scaling) \[ \varepsilon\partial_t F^\varepsilon+ v\cdot\nabla_x F^\varepsilon= \tfrac 1\varepsilon Q(F^\varepsilon, F^\varepsilon) \] inside a periodic box \(\mathbb T^3\). We assume that in the initial diffusive expansion at \(t=0\), the fluid parts of these \(f_m(0,x,v)\) have arbitrary divergence-free velocity fields as well as temperature fields for all \(1\leq m\leq n\) while \(f_1(0,x,v)\) has small amplitude in \(H^2\). For \(m\geq 2\), these \(f_m(t,x,v)\) are determined by a sequence of linear Navier-Stokes-Fourier systems iteratively. More importantly, the remainder \(f_n^\varepsilon(t,x,v)\) is proven to decay in time uniformly in \(\varepsilon\) via a unified nonlinear energy method. In particular, our results lead to an error estimate for \(f_1(t,x,v)\), the well-known Navier-Stokes-Fourier approximation, and beyond. The collision kernel \(Q\) includes hard-sphere, the cutoff inverse-power, as well as the Coulomb interactions.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
82B40 Kinetic theory of gases in equilibrium statistical mechanics
Full Text: DOI

References:

[1] Bardos, J Statist Phys 63 pp 323– (1991)
[2] Bardos, Comm Pure Appl Math 46 pp 667– (1993)
[3] Bardos, Arch Ration Mech Anal 153 pp 177– (2000)
[4] Bardos, Math Models Methods Appl Sci 1 pp 235– (1991)
[5] Bobylëv, Dokl Akad Nauk SSSR 262 pp 71– (1982)
[6] Caflisch, Commun Math Phys 74 pp 71– (1980)
[7] Caflisch, Comm Pure Appl Math 33 pp 651– (1980)
[8] The Boltzmann equation and its applications. Applied Mathematical Sciences, 67. Springer, New York, 1988. · doi:10.1007/978-1-4612-1039-9
[9] ; ; The mathematical theory of dilute gases. Applied Mathematical Sciences, 106. Springer, New York, 1994. · Zbl 0813.76001 · doi:10.1007/978-1-4419-8524-8
[10] ; The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. 3rd ed. Cambridge University Press, London, 1970.
[11] De Masi, Comm Pure Appl Math 42 pp 1189– (1989)
[12] DiPerna, Ann of Math (2) 130 pp 321– (1989)
[13] The kinetic theory of phenomena in fairly rare gas. Dissertation, Uppsala, 1917.
[14] Golse, Comm Pure Appl Math 55 pp 336– (2002)
[15] Golse, Invent Math 155 pp 81– (2004)
[16] ; Lecture, Fields Institute for Research in Mathematical Sciences, Toronto, 2004.
[17] Principles of the kinetic theory of gases. Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12. Thermodynamik der Gase, 205–294. Springer, Berlin-Göttingen-Heidelberg, 1958.
[18] Asymptotic theory of the Boltzmann equation. II. Rarefied gas dynamics (Proceedings of the 3rd International Symposium, Palais de l’UNESCO, Paris, 1962), Vol. I, 26–59. Academic Press, New York, 1963.
[19] Guo, Comm Math Phys 231 pp 391– (2002)
[20] Guo, Comm Pure Appl Math 55 pp 1104– (2002)
[21] Guo, Arch Ration Mech Anal 169 pp 305– (2003)
[22] Guo, Invent Math 153 pp 593– (2003)
[23] Guo, Indiana Univ Math J 53 pp 1081– (2004)
[24] Hilbert, Math Ann 22 pp 561– (1912)
[25] Lachowicz, Math Methods Appl Sci 9 pp 342– (1987)
[26] ; From the Boltzmann equation to an incompressible Navier-Stokes-Fourier system. Preprint.
[27] Lions, Arch Ration Mech Anal 158 pp 173– (2001)
[28] Lions, Arch Ration Mech Anal 158 pp 195– (2001)
[29] Masmoudi, Bal Soc Esp Mat Apl 26 pp 57– (2003)
[30] Masmoudi, Comm Pure Appl Math 56 pp 1263– (2003)
[31] Saint-Raymond, Ann Sci École Norm Sup 4 36 pp 271– (2003)
[32] Slemrod, Arch Ration Mech Anal 150 pp 1– (1999)
[33] Strain, Comm Math Phys 251 pp 263– (2004)
[34] ; Exponential decay for soft potentials. Preprint, 2005.
[35] Strain, Comm Partial Differential Equations
[36] Solutions of the Boltzmann equation. Patterns and waves, 37–96. Studies in Mathematics and Its Applications, 18. North-Holland, Amsterdam, 1986.
[37] Ukai, Hokkaido Math J 12 pp 311– (1983) · Zbl 0525.76062 · doi:10.14492/hokmj/1470081009
[38] A review of mathematical topics in collisional kinetic theory. Handbook of mathematical fluid dynamics, Vol. I, 71–305. North-Holland, Amsterdam, 2002. · Zbl 1170.82369
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.