×

Sextactic points on a simple closed curve. (English) Zbl 1088.53049

Let \(\gamma\) be a regular curve in the real or complex projective plane. A point \(p \in \gamma\) is said to be sextatic if the osculatory conic meets \(\gamma\) with multiplicity at least six at \(p\). Like inflexion points, sextatic points of curves in the complex projective plane are well understood since the nineteenth century, but the case of (not necessarily algebraic) curves in the real projective plane \(P^2\) still poses problems. Mukhopadhyaya proved in 1909 that strictly convex curves in the affine plane have at least six sextatic points. However, apparently nothing was known about curves that are not strictly convex.
Let \(\gamma\) be a simple, closed, regular, \(C^{\infty}\)-parameterized curve in \(P^2\). The main results the authors prove are summarized in the following three theorems.
1) If \(\gamma\) is not nullhomotopic, then it has at least three sextatic points.
2) If \(\gamma\) is nullhomotopic, then it has at least two or three sextatic points according to whether it is convex or not.
3) If \(\gamma\) is nullhomotopic, then the total number of sextatic and inflection points of \(\gamma\) is at least four.
In particular, 1) answers positively a long standing conjecture of G. Bol. Moreover, the authors show that all these results, as well as the projective version of Mukhopadhyaya’s, are optimal. They also observe that all theorems remain true for \(C^4\)-curves, up to modify the notion of sextatic point appropriately. The authors’ approach is axiomatic and similar to the one they developed to deal with vertices [A unified approach to the four vertex theorems, I, II, Differential and symplectic topology of knots and curves S. Tabachnikov (ed.) Am. Math. Soc. Transl., Ser. 2, 190(42), 185–228 (1999; Zbl 1068.53005) and ibid. 190(42), 229–252 (1999; Zbl 1068.53004)]. In the final appendix the authors consider curves in the complex projective plane and prove a formula counting the number of sextatic points with multiplicities for a nonsingular algebraic curve of degree \(d\). This is done without assuming that the inflection points are simple, as implicitly Cayley did finding the number \(3d(4d-9)\), in 1865.

MSC:

53C75 Geometric orders, order geometry
51L15 \(n\)-vertex theorems via direct methods
53A20 Projective differential geometry
58K15 Topological properties of mappings on manifolds

References:

[1] V. I. Arnold, A ramified covering of \(\mathbf CP^2 \to S^4\), hyperbolicity and projective topology , (Russian), Sib. Mat. Zh., 29 (1988), 36-47 ; English translation in: Sib. Math. J., 29 (1988), 717-726. · Zbl 0668.57003
[2] V. I. Arnold, Topological Invariants of Plane Curves and Caustics, University Lecture Series 5 , American Mathematical Society, Providence, Rhode Island (1994).
[3] V. I. Arnold, Remarks on the extatic points of plane curves , The Gelfand Mathematical Seminars, 1993-1995, 11-22, Birkhäuser, Boston (1996). · Zbl 0990.58026
[4] M. Barner, Über die Mindestanzahl stationärer Schmiegebenen bei geschlossenen strengkonvexen Raumkurven , Abh. Math. Sem. Univ. Hamburg, 20 (1956), 196-215. · Zbl 0071.15601
[5] A. B. Basset, On sextactic and allied conics , Quart. J., 46 (1915), 247-252. · JFM 45.1360.01
[6] G. Battaglini, Sui punti sestatici di una curva qualunque , Atti R. Acc. Lincei, Rend. (Serie quarta) IV \(_2\) (1888), 238-246. · JFM 20.0707.02
[7] W. Blaschke, Über affine Geometrie VIII : Die Mindestzahl der sextaktischen Punkte einer Eilinie , Leipziger Berichte, 69 (1917), 321-324 ; Also in: Gesammelte Werke, Band 4 , 153-156. Thales Verlag, Essen, 1985. · JFM 46.1113.01
[8] W. Blaschke, Vorlesungen über Differentialgeometrie II, Affine Differentialgeometrie, Springer-Verlag, Berlin (1923). · JFM 49.0499.01
[9] G. Bol, Projektive Differentialgeometrie, 1. Teil., Vandenhoeck & Ruprecht, Göttingen (1950).
[10] A. Cayley, On the conic of five-pointic contact at any point of a plane curve , Philosophical Transactions of the Royal Society of London CXLIX (1859), 371-400 ; Also in: The Collected Mathematical Papers, Vol. IV, Cambridge University Press, 1891.
[11] A. Cayley, On the sextactic points of a plane curve , Philosophical Transactions of the Royal Society of London CLV (1865), 548-578 ; Also in: The Collected Mathematical Papers, Vol. V, Cambridge University Press, 1892. · ERAM 064.1670cj
[12] Fr. Fabricius-Bjerre, On a conjecture of G. Bol , Math. Scand., 40 (1977), 194-196. · Zbl 0373.53002
[13] L. Guieu, E. Mourre and V. Yu. Ovsienko, Theorem on six vertices of a plane curve via Sturm theory , The Arnold-Gelfand Mathematical Seminars, 257-266, Birkhäuser, Boston (1997). · Zbl 1076.53500
[14] S. Izumiya and T. Sano, Private Communication (1998).
[15] H. Kneser, Neuer Beweis des Vierscheitelsatzes , Christiaan Huygens, 2 (1922/23), 315-318. · JFM 48.0779.03
[16] R. Miranda, Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics 5 , American Mathematical Society, Providence, Rhode Island (1995). · Zbl 0820.14022
[17] A. F. Möbius, Über die Grundformen der Linien der dritten Ordnung , Abhandlungen der Königl. Sächs. Gesellschaft der Wissenschaften, math.-phys. Klasse I (1852), 1-82 ; Also in: Gesammelte Werke, vol. II, Verlag von S. Hirzel, Leipzig, 1886, 89-176.
[18] S. Mukhopadhyaya, New methods in the geometry of a plane arc, I , Bull. Calcutta Math. Soc., 1 (1909), 31-37 ; Also in: Collected geometrical papers, vol. I. Calcutta University Press, Calcutta (1929), 13-20. · JFM 40.0624.01
[19] S. Mukhopadhyaya, Sur les nouvelles méthodes de géometrie , C. R. Séance Soc. Math. France, année 1933 (1934), 41-45. · Zbl 0009.32102
[20] G. Thorbergsson and M. Umehara, A unified approach to the four vertex theorems, II , Differential and symplectic topology of knots and curves (S. Tabachnikov, ed.), Amer. Math. Soc. Transl., Ser. 2, 190 (1999), 229-252. · Zbl 1068.53004
[21] G. Thorbergsson and M. Umehara, On global properties of flexes of periodic functions , preprint (2001). · Zbl 1066.51007
[22] M. Umehara, A unified approach to the four vertex theorems, I , Differential and symplectic topology of knots and curves (S. Tabachnikov, ed.), Amer. Math. Soc. Transl., Ser. 2, 190 (1999), 185-228. · Zbl 1068.53005
[23] A. O. Viro, Differential geometry “in the large” of plane algebraic curves, and integral formulas for invariants of singularities , (Russian), Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI), 231 (1995), 255-268. · Zbl 0884.14027
[24] C. T. C. Wall, Duality of real projective plane curves : Klein’s equation , Topology, 35 (1996), 355-362. · Zbl 0894.14013 · doi:10.1016/0040-9383(95)00021-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.