×

Pseudo-symmetric numerical semigroups with three generators. (English) Zbl 1088.20034

A numerical semigroup \(S\) of nonnegative integers contains \(0\) and it generates the set \(\mathbb{Z}\) of integers as a group. For a subset \(A\subseteq\mathbb{N}\), let \(\langle A\rangle=\{\sum_{i=1}^k a_ix_i\mid a_i\in A\), \(x_1,\dots,x_k\in\mathbb{N}\}\). Then \(\langle A\rangle\) is a numerical semigroup if and only if \(\gcd(A)=1\). It is well known that a numerical semigroup \(S\) has a unique minimal set of generators \(\{n_1,n_2,\dots,n_e\}\) and that \(\mathbb{N}\setminus S\) is finite. The greatest element \(g(S)\) of \(\mathbb{Z}\setminus S\) is called the Frobenius number of \(S\). Obtaining a general solution for \(g(S)\) in terms of \(n_1,n_2,\dots,n_e\) is an open problem for \(e \geq 3\). A numerical semigroup \(S\) is said to be pseudo-symmetric if \(g(S)\) is even and the only integer \(x\) such that \(x\in\mathbb{Z}\setminus S\) and \(g(S)-x\notin S\) is \(x=g(S)/2\).
The authors consider a numerical monoid \(S\) with a minimal set \(\{n_1,n_2,n_3\}\) of three generators. They provide an easy way to determine whether \(S\) is pseudo-symmetric, and they also give a short formula for \(g(S)\) in this case.

MSC:

20M14 Commutative semigroups
20M05 Free semigroups, generators and relations, word problems
Full Text: DOI

References:

[1] Apéry, R., Sur les branches superlinéaires des courbes algébriques, C. R. Acad. Sci. Paris, 222 (1946) · Zbl 0061.35404
[2] Barucci, V.; Dobbs, D. E.; Fontana, M., Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc., 598 (1997) · Zbl 0868.13003
[3] Fröberg, R.; Gottlieb, C.; Häggkvist, R., On numerical semigroups, Semigroup Forum, 35, 63-83 (1987) · Zbl 0614.10046
[4] Herzog, J., Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math., 3, 175-193 (1970) · Zbl 0211.33801
[5] J.L. Ramírez Alfonsín, The Diophantine Frobenius problem, Forschungsintitut für Diskrete Mathematik, Bonn, Report No. 00893, 2000; J.L. Ramírez Alfonsín, The Diophantine Frobenius problem, Forschungsintitut für Diskrete Mathematik, Bonn, Report No. 00893, 2000
[6] Rédei, L., The Theory of Finitely Generated Commutative Semigroups (1965), Pergamon: Pergamon Oxford · Zbl 0133.27904
[7] Rosales, J. C., On symmetric numerical semigroups, J. Algebra, 182, 422-434 (1996) · Zbl 0856.20043
[8] Rosales, J. C.; Branco, M. B., Irreducible numerical semigroups, Pacific J. Math., 209, 131-143 (2003) · Zbl 1057.20042
[9] Rosales, J. C.; García-Sánchez, P. A., Finitely Generated Commutative Monoids (1999), Nova Science Publishers: Nova Science Publishers New York · Zbl 0966.20028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.