×

Strong consistence of recursive identification for Wiener systems. (English) Zbl 1087.93057

Summary: The paper concerns identification of the Wiener system consisting of a linear subsystem followed by a static nonlinearity \(f(\cdot)\) with no invertibility and structure assumption. Recursive estimates are given for coefficients of the linear subsystem and for the value \(f(v)\) at any fixed \(v\). The main contribution of the paper consists in establishing convergence with probability one of the proposed algorithms to the true values. This probably is the first strong consistency result for this kind of Wiener systems. A numerical example is given, which justifies the theoretical analysis.

MSC:

93E12 Identification in stochastic control theory
62G05 Nonparametric estimation
62L20 Stochastic approximation
Full Text: DOI

References:

[1] Bendat, J. S., Nonlinear system analysis and identification from random data (1999), Wiley: Wiley New York · Zbl 0347.93014
[2] Billings, S. A.; Fakhouri, F. Y., Identification of nonlinear systems using the Wiener model, Electronics Letters, 13, 502-504 (1978)
[3] Chen, H. F., Stochastic approximation and its applications (2002), Kluwer: Kluwer Dordrecht · Zbl 1008.62071
[4] Chen, H. F., Pathwise convergence of recursive identification algorithms for Hammerstein systems, IEEE Transactions on Automatic Control, 49, 10, 1641-1649 (2004) · Zbl 1365.93519
[5] Chen, H. F.; Guo, L., Identification and stochastic adaptive control (1991), Birkhäuser: Birkhäuser Boston · Zbl 0747.93002
[6] Chow, Y. S.; Teicher, H., Probability theory (1978), Springer: Springer New York · Zbl 0399.60001
[7] Greblicki, W., Nonparametric approach to Wiener system identification, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 44, 6, 538-545 (1997)
[8] Greblicki, W., Recursive identification of Wiener system, Applied Mathematics and Computer Science, 11, 4, 977-991 (2001) · Zbl 1001.93085
[9] Hasiewicz, Z., Identification of a linear system observed though zero-memory nonlinearity, International Journal of Systems Science, 18, 1595-1607 (1987) · Zbl 0629.93069
[10] Hunter, I. W.; Korenberg, M. J., The identification of nonlinear biological systems: Wiener and Hammerstein cascade models, Biological Cybernetics, 55, 135-144 (1986) · Zbl 0611.92002
[11] Ljung, L., System identification (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0639.93059
[12] Nordsjö, A. E.; Zetterberg, L. H., Identification of certain time-varying nonlinear Wiener and Hammerstein systems, IEEE Transactions on Signal Processings, 49, 577-592 (2001)
[13] Pajunen, G. A., Adaptive control of Wiener type nonlinear systems, Automatica, 28, 781-785 (1992) · Zbl 0765.93042
[14] Verhaegen, M.; Westwick, D., Identifying MIMO Wiener systems in the context of subspace model identification methods, International Journal of Control, 63, 2, 331-349 (1996) · Zbl 0848.93014
[15] Vörös, J., Parameter identification of Wiener systems with discontinuous nonlinearities, Systems and Control Letters, 44, 363-372 (2001) · Zbl 0986.93020
[16] Westwick, D. T.; Kearney, R. E., A new algorithm for the identification of multiple input Wiener systems, Biological Cybernetics, 68, 75-85 (1992) · Zbl 0758.92001
[17] Wiener, N., Nonlinear problems in random theory (1958), Wiley: Wiley NewYork · Zbl 0121.12302
[18] Wigren, T., Convergence analysis of recursive algorithms based on the nonlinear Wiener model, IEEE Transactions on Automatic Control, 39, 2191-2206 (1994) · Zbl 0814.93074
[19] Wigren, T., Recursive prediction error identification using the nonlinear Wiener mode, Automatica, 29, 1011-1025 (1993) · Zbl 0776.93006
[20] Wigren, T., Circle criteria in recursive identification, IEEE Transactions on Automatic Control, 42, 975-979 (1997) · Zbl 0885.93017
[21] Wigren, T., Output error convergence of adaptive filters with compensation for output nonlinearities, IEEE Transactions on Automatic Control, 43, 975-978 (1998) · Zbl 0952.93128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.