×

Computation of the phase response curve: a direct numerical approach. (English) Zbl 1087.92001

Summary: Neurons are often modeled by dynamical systems – parameterized systems of differential equations. A typical behavioral pattern of neurons is periodic spiking; this corresponds to the presence of stable limit cycles in the dynamical systems model. The phase resetting and phase response curves (PRCs) describe the reaction of the spiking neuron to an input pulse at each point of the cycle. We develop a new method for computing these curves as a by-product of the solution of the boundary value problem for the stable limit cycle. The method is mathematically equivalent to the adjoint method, but our implementation is computationally much faster and more robust than any existing method. In fact, it can compute PRCs even where the limit cycle can hardly be found by time integration, for example, because it is close to another stable limit cycle. In addition, we obtain the discretized phase response curve in a form that is ideally suited for most applications. We present several examples and provide the implementation in a freely available Matlab code.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
68T05 Learning and adaptive systems in artificial intelligence
37N25 Dynamical systems in biology
92C20 Neural biology

Software:

MATCONT; XPPAUT; Matlab; AUTO
Full Text: DOI

References:

[1] DOI: 10.1137/1023039 · Zbl 0461.34021 · doi:10.1137/1023039
[2] DOI: 10.1162/089976604322860668 · Zbl 1054.92006 · doi:10.1162/089976604322860668
[3] DOI: 10.1016/S0006-3495(77)85598-7 · doi:10.1016/S0006-3495(77)85598-7
[4] DOI: 10.1137/0710052 · Zbl 0232.65065 · doi:10.1137/0710052
[5] DOI: 10.1145/779359.779362 · Zbl 1070.65574 · doi:10.1145/779359.779362
[6] DOI: 10.1162/neco.1996.8.5.979 · doi:10.1162/neco.1996.8.5.979
[7] DOI: 10.1007/BF00276920 · Zbl 0476.92007 · doi:10.1007/BF00276920
[8] DOI: 10.1007/BF00160535 · Zbl 0718.92004 · doi:10.1007/BF00160535
[9] DOI: 10.1016/j.cmpb.2004.09.004 · doi:10.1016/j.cmpb.2004.09.004
[10] DOI: 10.1007/s10827-005-0328-9 · doi:10.1007/s10827-005-0328-9
[11] DOI: 10.1007/BF01273747 · Zbl 0345.92001 · doi:10.1007/BF01273747
[12] DOI: 10.1109/TSMC.1983.6313073 · Zbl 0543.92006 · doi:10.1109/TSMC.1983.6313073
[13] DOI: 10.1209/0295-5075/23/5/011 · doi:10.1209/0295-5075/23/5/011
[14] DOI: 10.1162/neco.1995.7.2.307 · doi:10.1162/neco.1995.7.2.307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.