×

A noncommutative theory of Penrose tilings. (English) Zbl 1087.52509

In 1986, the first author introduced quantales as an invariant of noncommutative \(C^\ast\)-algebras – they should be thought as noncommutative topological spaces. This paper uses quantales to study Penrose tilings. Since quantales are algebraic structures, they can be defined by generators and relations. It is possible to associate a quantale to Penrose tilings; classically one gets a topological space. Algebraically irreducible representations of this quantale then classify Penrose tilings. This approach is analogous to that of Connes’ noncommutative teometry who uses \(C^\ast\)-algebras.

MSC:

52C23 Quasicrystals and aperiodic tilings in discrete geometry
58B34 Noncommutative geometry (à la Connes)
46L85 Noncommutative topology

References:

[1] Abramsky, S. and Vickers, S. (1993). Mathematical Structures in Computer Science 3, 161–227. · Zbl 0823.06011 · doi:10.1017/S0960129500000189
[2] Amira, H., Coecke, B., and Stubbe, I. (1998). Helvetica Physica Acta 71, 554–572.
[3] Banaschewski, B. and Mulvey, C. J. (2000a). Quaestiones Mathematicae 23, 425–464. · Zbl 0977.18003 · doi:10.2989/16073600009485989
[4] Banaschewski, B. and Mulvey, C. J. (2000b). Quaestiones Mathematicae 23, 465–488. · Zbl 0977.18004 · doi:10.2989/16073600009485990
[5] Banaschewski, B. and Mulvey, C. J. (To appear). A globalisation of Gelfand duality.
[6] Coecke, B. and Stubbe, I. (1999). International Journal of Theoretical Physics 38, 3269–3281. · Zbl 0991.81014 · doi:10.1023/A:1026642501652
[7] Connes, A. (1994). Noncommutative Geometry, Academic Press. · Zbl 0818.46076
[8] Giles, R. and Kummer, H. (1971). Indiana University Mathematics Journal 21, 91–102. · Zbl 0219.54003 · doi:10.1512/iumj.1971.21.21008
[9] Grümbaum, B. and Shepard, G. C. (1989). Tilings and Patterns, Freeman, New York.
[10] Johnstone, P. (1982). Stone Spaces, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press. · Zbl 0499.54001
[11] Joyal, A. and Tierney, M. (1984). An Extension of the Galois Theory of Grothendieck, Memoirs of the American Mathematical Society, vol. 309, American Mathematical Society. · Zbl 0541.18002
[12] Kruml, D. (2002). Applied Categorical Structures 10, 49–62. · Zbl 0999.06015 · doi:10.1023/A:1013381225141
[13] Kruml, D. (2002). Ph.D. Thesis, Masaryk University, Brno.
[14] Kruml, D., Pelletier, J. W., Resende, P., and Rosický, J. (2003). Applied Categorical Structures 11, 543–560; arXiv:math.OA/0211345. · Zbl 1044.46052 · doi:10.1023/A:1026106305210
[15] Kruml, D. and Resende, P. (2004). Cahiers de Top. et Geom. Diff. Cat. XLV-4, 287–296; arXiv:math.OA/0404001.
[16] Mulvey, C. J. (1986). Rendiconti del Circolo Matemático di Palermo 2(Suppl.) 99–104.
[17] Mulvey, C. J. (1989). Quantales, Invited Lecture, Summer Conference on Locales and Topological Groups, Curaçao.
[18] Mulvey, C. J. (2002). Quantales. In The Encyclopaedia of Mathematics, M. Hazewinkel, ed., 3rd supplement, Kluwer Academic Publishers, 2002, pp. 312–314.
[19] Mulvey, C. J. and Pelletier, J. W. (1992). Canadian Mathematical Society Conference Proceeding 13, 345–360.
[20] Mulvey, C. J. and Pelletier, J. W. (2001). Journal of Pure and Applied Algebra 159, 231–295. · Zbl 0983.18007 · doi:10.1016/S0022-4049(00)00059-1
[21] Mulvey, C. J. an Pelletier, J. W. (2002). Journal of Pure and Applied Algebra 175, 289–325. · Zbl 1026.06018 · doi:10.1016/S0022-4049(02)00139-1
[22] Paseka, J. and Rosický, J. (2000). Quantales, In Current Research in Operational Quantum Logic: Algebras, Categories and Languages, B. Coecke, D. Moore, A. Wilce, eds., Fundamental Theories of Physics, vol. 111, Kluwer Academic Publishers, pp. 245–262. · Zbl 0962.06017
[23] Pelletier, J. W. and Rosický, J. (1997). Journal of Algebra 195, 367–386. · Zbl 0894.06005 · doi:10.1006/jabr.1997.7051
[24] Pisier, G. (2003). Introduction to Operator Space Theory, Cambridge University Press. · Zbl 1093.46001
[25] Resende, P. (1999). Modular specification of concurrent systems with observational logic. In Proceedings of WADT’98, Lecture Notes in Computer Science, J.L. Fiadeiro, ed., vol. 1589, Springer, Berlin, pp. 307–321. · Zbl 0946.03037
[26] Resende, P. (2000). Quantales and observational semantics. In Current Research in Operational Quantum Logic: Algebras, Categories and Languages, B. Coecke, D. Moore, A. Wilce, eds., Fundamental Theories of Physics, vol. 111, Kluwer Academic Publishers, pp. 263–288. · Zbl 0963.81003
[27] Resende, P. (2001). Theoretical Computer Science 254, 95–149. · Zbl 0972.68122 · doi:10.1016/S0304-3975(99)00123-1
[28] Resende, P. (2002). Journal of Pure and Applied Algebra 173, 87–120. · Zbl 1026.06017 · doi:10.1016/S0022-4049(01)00156-6
[29] Resende, P. (2004). Journal of Algebra 276, 143–167; arXiv:math.RA/0211320. · Zbl 1059.06011 · doi:10.1016/j.jalgebra.2004.01.020
[30] Resende, P. and Vickers, S. J. (2003). Theoretical Computer Science 305, 311–346. · Zbl 1060.06022 · doi:10.1016/S0304-3975(02)00702-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.