×

Error estimates for semi-discrete gauge methods for the Navier-Stokes equations. (English) Zbl 1085.76058

Summary: The gauge formulation of the Navier-Stokes equations for incompressible fluids is a new projection method. It splits the velocity \(\mathbf{u}=\mathbf{a}+\nabla\phi\) in terms of auxiliary (nonphysical) variables \(\mathbf{a}\) and \(\phi\) and replaces the momentum equation by a heat-like equation for \(\mathbf{a}\) and the incompressibility constraint by a diffusion equation for \(\phi\). This paper studies two time-discrete algorithms based on this splitting and the backward Euler method for \(\mathbf{a}\) with explicit boundary conditions and shows their stability and rates of convergence for both velocity and pressure. The analyses are variational and hinge on realistic regularity requirements on the exact solution and data. Both Neumann and Dirichlet boundary conditions are, in principle, admissible for \(\phi\), but a compatibility restriction for the latter is uncovered which limits its applicability.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[2] David L. Brown, Ricardo Cortez, and Michael L. Minion, Accurate projection methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 168 (2001), no. 2, 464 – 499. · Zbl 1153.76339 · doi:10.1006/jcph.2001.6715
[3] Alexandre Joel Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22 (1968), 745 – 762. · Zbl 0198.50103
[4] Peter Constantin and Ciprian Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. · Zbl 0687.35071
[5] Monique Dauge, Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations, SIAM J. Math. Anal. 20 (1989), no. 1, 74 – 97. · Zbl 0681.35071 · doi:10.1137/0520006
[6] W. E and J.-G. Liu, Gauge finite element method for incompressible flows, Int. J. Num. Meth. Fluids, 34 (2000), 701-710. · Zbl 1032.76038
[7] W. E and J.-G. Liu, Gauge method for viscous incompressible flows, Comm. Math. Sci., 1 (2003), 317-332. · Zbl 1160.76329
[8] Weinan E and Jian-Guo Liu, Projection method. I. Convergence and numerical boundary layers, SIAM J. Numer. Anal. 32 (1995), no. 4, 1017 – 1057. · Zbl 0842.76052 · doi:10.1137/0732047
[9] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. · Zbl 0585.65077
[10] Claes Johnson, Rolf Rannacher, and Mats Boman, Numerics and hydrodynamic stability: toward error control in computational fluid dynamics, SIAM J. Numer. Anal. 32 (1995), no. 4, 1058 – 1079. · Zbl 0833.76063 · doi:10.1137/0732048
[11] John G. Heywood and Rolf Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982), no. 2, 275 – 311. · Zbl 0487.76035 · doi:10.1137/0719018
[12] R. B. Kellogg and J. E. Osborn, A regularity result for the Stokes problem in a convex polygon, J. Functional Analysis 21 (1976), no. 4, 397 – 431. · Zbl 0317.35037
[13] R.H. Nochetto and J.-H. Pyo, Optimal relaxation parameter for the Uzawa method Numer. Math. (to appear). · Zbl 1065.65130
[14] R.H. Nochetto and J.-H. Pyo, A finite element Gauge-Uzawa method. Part I : the Navier-Stokes equations (to appear). · Zbl 1094.76041
[15] R.H. Nochetto and J.-H. Pyo, Comparing Gauge-Uzawa methods with other projection methods (to appear).
[16] Ricardo H. Nochetto, Giuseppe Savaré, and Claudio Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Comm. Pure Appl. Math. 53 (2000), no. 5, 525 – 589. , https://doi.org/10.1002/(SICI)1097-0312(200005)53:53.0.CO;2-M · Zbl 1021.65047
[17] V. I. Oseledets, A new form of writing out the Navier-Stokes equation. Hamiltonian formalism, Uspekhi Mat. Nauk 44 (1989), no. 3(267), 169 – 170 (Russian); English transl., Russian Math. Surveys 44 (1989), no. 3, 210 – 211. · Zbl 0850.76130 · doi:10.1070/RM1989v044n03ABEH002122
[18] Andreas Prohl, Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1997. · Zbl 0874.76002
[19] J.-H. Pyo, The Gauge-Uzawa and related projection finite element methods for the evolution Navier-Stokes equations, Ph.D dissertation, University of Maryland (2002).
[20] Rolf Rannacher, On Chorin’s projection method for the incompressible Navier-Stokes equations, The Navier-Stokes equations II — theory and numerical methods (Oberwolfach, 1991) Lecture Notes in Math., vol. 1530, Springer, Berlin, 1992, pp. 167 – 183. · Zbl 0769.76053 · doi:10.1007/BFb0090341
[21] Jie Shen, On error estimates of projection methods for Navier-Stokes equations: first-order schemes, SIAM J. Numer. Anal. 29 (1992), no. 1, 57 – 77. · Zbl 0741.76051 · doi:10.1137/0729004
[22] Roger Temam, Navier-Stokes equations and nonlinear functional analysis, 2nd ed., CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. · Zbl 0833.35110
[23] Roger Temam, Navier-Stokes equations, 3rd ed., Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam, 1984. Theory and numerical analysis; With an appendix by F. Thomasset. · Zbl 0568.35002
[24] R. Témam, Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II, Arch. Rational Mech. Anal. 33 (1969), 377 – 385 (French). · Zbl 0207.16904 · doi:10.1007/BF00247696
[25] Vidar Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 1997. · Zbl 0884.65097
[26] Cheng Wang and Jian-Guo Liu, Convergence of gauge method for incompressible flow, Math. Comp. 69 (2000), no. 232, 1385 – 1407. · Zbl 0968.76065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.