×

Antiperiodic boundary value problem for first-order impulsive ordinary differential equations. (English) Zbl 1084.34018

The authors consider the antiperiodic boundary value problem for an impulse differential equation of the form \[ \begin{gathered} x'(t)+\lambda x(t)= F(t,x(t)),\quad t\in J,\;t\neq t_k,\\ \Delta x(t_k)= I_k(x(t_k)),\quad k= 1,2,\dots, m,\\ x(0)= -x(T),\end{gathered} \] with \(t\in J= [0,T]\), \(t\neq t_k\), \(\lambda> 0\).
Sufficiently conditions for the existence of a solution are derived.

MSC:

34B15 Nonlinear boundary value problems for ordinary differential equations
34A37 Ordinary differential equations with impulses
Full Text: DOI

References:

[1] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations (1989), World Scientific: World Scientific Cambridge · Zbl 0719.34002
[2] Franco, D.; Nieto, J. J., First-order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions, Nonlinear Anal., 42, 163-173 (2000) · Zbl 0966.34025
[3] Chen, Y. Q., On Massera’s theorem for anti-periodic solution, Adv. Math. Sci. Appl., 9, 125-128 (1999) · Zbl 0924.34037
[4] Yin, Y., Remarks on first order differential equations with anti-periodic boundary conditions, Nonlinear Times Digest, 2, 83-94 (1995) · Zbl 0832.34018
[5] Yin, Y., Monotone iterative technique and quasilinearization for some anti-periodic problem, Nonlinear World, 3, 253-266 (1996) · Zbl 1013.34015
[6] Franco, D.; Nieto, J. J.; O’Regan, D., Anti-periodic boundary value problem for nonlinear first order ordinary differential equations, Math. Inequal. Appl., 6, 477-485 (2003) · Zbl 1097.34015
[7] Aizicovici, S.; Mckibben, S.; Reich, S., Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities, Nonlinear Anal., 43, 233-251 (2001) · Zbl 0977.34061
[8] Nakao, M., Existence of an anti-periodic solution for the quasilinear wave equation with viscosity, J. Math. Anal. Appl., 204, 754-764 (1996) · Zbl 0873.35051
[9] Souplet, P., Optimal uniqueness condition for the antiperiodic solutions of some nonlinear parabolic equations, Nonlinear Anal., 32, 279-286 (1998) · Zbl 0892.35078
[10] Ahn, C.; Rim, C., Boundary flows in general coset theories, J. Phys. A, 32, 2509-2525 (1999) · Zbl 0960.81062
[11] Kleinert, H., Functional determinants from Wronski Green functions, J. Math. Phys., 40, 6044-6051 (1999) · Zbl 0963.34075
[12] Pinsky, S.; Trittmann, U., Antiperiodic boundary conditions in supersymmetric discrete light cone quantization, Phys. Rev. D(3), 62 (2000)
[13] Abdurrahman, A.; Anton, F.; Bordes, J., Half-string oscillator approach to string field theory (Ghost sector. I), Nuclear Phys. B, 397, 260-282 (1993)
[14] O’Regan, D., Existence Theory for Nonlinear Ordinary Differential Equations (1997), Kluwer: Kluwer Singapore · Zbl 1077.34505
[15] Cabada, A.; Nieto, J. J., Fixed points and approximate solutions for nonlinear operator equations, J. Comput. Appl. Math., 113, 17-25 (1999) · Zbl 0954.47038
[16] Ladde, G. S.; Lakshmikantham, V.; Vatsala, A. S., Monotone Iterative Techniques for Nonlinear Differential Equations (1985), Pitman: Pitman Dordrecht · Zbl 0658.35003
[17] Bainov, D. D.; Simeonov, P. S., Impulsive Differential Equations: Periodic Solutions and Applications (1993), Longman: Longman Boston, MA · Zbl 0793.34011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.