×

Critical points for spread-out self-avoiding walk, percolation and the contact process above the upper critical dimensions. (English) Zbl 1083.60080

Authors’ abstract: We consider self-avoiding walk and percolation in \(\mathbb{Z}^d\), oriented percolation in \(\mathbb{Z}^d\times\mathbb{Z}_+\), and the contact process in \(\mathbb{Z}^d\), with \(p D(\cdot)\) being the coupling function whose range is proportional to \(L\). For percolation, for example, each bond is independently occupied with probability \(p D(y-x)\). The above models are known to exhibit a phase transition when the parameter \(p\) varies around a model-dependent critical point \(p_c\). We investigate the value of \(p_c\) when \(d>6\) for percolation and \(d>4\) for the other models, and \(L\gg1\). We prove in a unified way that \(p_c=1+C(D)+O(L^{-2d})\), where the universal term \(1\) is the mean-field critical value, and the model-dependent term \(C(D)=O(L^{-d})\) is written explicitly in terms of the random walk transition probability \(D\). We also use this result to prove that \(p_c=1+cL^{-d}+O(L^{-d-1})\), where \(c\) is a model-dependent constant. Our proof is based on the lace expansion for each of these models.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G50 Sums of independent random variables; random walks
82B43 Percolation

References:

[1] Aizenman, J. Statist. Phys., 36, 107 (1984) · Zbl 0586.60096 · doi:10.1007/BF01015729
[2] Barsky, Ann. Probab., 19, 1520 (1991) · Zbl 0747.60093
[3] Bezuidenhout, Ann. Probab., 19, 984 (1991) · Zbl 0743.60107
[4] Bramson, Ann. Probab., 17, 444 (1989) · Zbl 0682.60090
[5] Borgs, C., Chayes, J.T., Van der Hofstad, R., Slade, G., Spencer, J.: Random subgraphs of finite graphs: II. The lace expansion and the triangle condition. Preprint (2003). To appear in Ann. Probab. · Zbl 1079.05087
[6] Cox, Math. Proc. Cambridge Philos. Soc., 93, 151 (1983) · Zbl 0505.60017
[7] Durrett, Probab. Th. Rel. Fields, 114, 309 (1999) · Zbl 0953.60093 · doi:10.1007/s004400050228
[8] Grimmett, G.: Percolation. Springer, Berlin (1999)
[9] Grimmett, G., Hiemer, P.: Directed percolation and random walk. V. Sidoravicius (ed.), In and Out of Equilibrium, Birkhäuser 2002, pp. 273-297 · Zbl 1010.60087
[10] Hara, Ann. Probab., 31, 349 (2003) · Zbl 1044.82006 · doi:10.1214/aop/1046294314
[11] Hara, Commun. Math. Phys., 128, 333 (1990) · Zbl 0698.60100
[12] Hara, Combin. Probab. Comput., 4, 197 (1995) · Zbl 0838.60087
[13] van der Hofstad, R.: The derivative of the lace expansion coefficients for unoriented percolation. Unpublished document (2003)
[14] Hofstad, R.; Sakai, A., Gaussian scaling for the critical spread-out contact process above the upper critical dimension. Preprint(2003), Electr. Journ. Probab., 9, 710-769 (2004) · Zbl 1077.60076
[15] Hofstad, Probab. Th. Rel. Fields, 122, 389 (2002) · Zbl 1002.60095 · doi:10.1007/s004400100175
[16] Hofstad, Ann. Inst. H. Poincaré Probab. Statist., 39, 413 (2003) · Zbl 1020.60099
[17] Hofstad, Adv. Appl. Math., 30, 471 (2003) · Zbl 1027.60098 · doi:10.1016/S0196-8858(02)00507-9
[18] van der Hofstad, R., Slade, G.: Expansion in n^-1 for percolation critical values on the n-cube and ℤ^n: the first three terms. Preprint (2004). To appear in Combin. Probab. Comput. · Zbl 1102.60090
[19] van der Hofstad, R., Slade, G.: Asymptotic expansions in n^-1 for percolation critical values on the n-cube and ℤ^n. Preprint (2004). To appear in Random Structures Algorithms. · Zbl 1077.60077
[20] Kesten, Math. Phys., 74, 41 (1980) · Zbl 0441.60010 · doi:10.1007/BF01197577
[21] Liggett, T.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999) · Zbl 0949.60006
[22] Liggett, Ann. Probab., 25, 1 (1997) · Zbl 0873.60072 · doi:10.1214/aop/1024404276
[23] Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhäuser, Boston (1993) · Zbl 0780.60103
[24] Nguyen, Ann. Probab., 21, 1809 (1993)
[25] Penrose, J. Statist. Phys., 77, 3 (1994) · Zbl 0850.53019
[26] Sakai, J. Statist. Phys., 104, 111 (2001) · Zbl 1019.82012 · doi:10.1023/A:1010320523031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.