×

Extinction probability in a birth-death process with killing. (English) Zbl 1083.60071

Authors’ abstract: We study birth-death processes on the nonnegative integers, where \(\{1,2,\dots\}\) is an irreducible class and 0 an absorbing state, with the additional feature that a transition to state 0 may occur from any state. We give a condition for absorption (extinction) to be certain and obtain the eventual absorption probabilities when absorption is not certain. We also study the rate of convergence, as \(t\to\infty\), of the probability of absorption at time \(t\), and relate it to the common rate of convergence of the transition probabilities that do not involve state 0. Finally, we derive upper and lower bounds for the probability of absorption at time \(t\) by applying a technique that involves the logarithmic norm of an appropriately defined operator.

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60J27 Continuous-time Markov processes on discrete state spaces
Full Text: DOI

References:

[1] Anderson, W. J. (1991). Continuous-Time Markov Chains . Springer, New York. · Zbl 0731.60067
[2] Bobrowski, A. (2004). Quasi-stationary distributions of a pair of Markov chains related to time evolution of a DNA locus. Adv. Appl. Prob. 36 , 56–77. · Zbl 1042.92020 · doi:10.1239/aap/1077134464
[3] Brockwell, P. J. (1986). The extinction time of a general birth and death process with catastrophes. J. Appl. Prob. 23 , 851–858. · Zbl 0614.60081 · doi:10.2307/3214459
[4] Chen, A., Pollett, P., Zhang, H. and Cairns, B. (2004). Uniqueness criteria for continuous-time Markov chains with general transition structure. Preprint, University of Queensland. · Zbl 1101.60055 · doi:10.1239/aap/1134587753
[5] Chen, M. F. (1991). Exponential \(L^2\)-convergence and \(L^2\)-spectral gap for Markov processes. Acta Math. Sinica (N.S.) 7 , 19–37. · Zbl 0738.60076 · doi:10.1007/BF02582989
[6] Chen, M. F. (1996). Estimation of the spectral gap for Markov chains. Acta Math. Sinica (N.S.) 12 , 337–360. · Zbl 0867.60038 · doi:10.1007/BF02106789
[7] Chihara, T. S. (1978). An Introduction to Orthogonal Polynomials . Gordon and Breach, New York. · Zbl 0389.33008
[8] Cohen, J. W. (1982). The Single Server Queue (North-Holland Ser. Appl. Math. Mech. 8 ), 2nd edn. North-Holland, Amsterdam. · Zbl 0481.60003
[9] Elmes, S., Pollett, P. and Walker, D. (2000). Further results on the relationship between \(\mu\)-invariant measures and quasi-stationary distributions for absorbing continuous-time Markov chains. Math. Comput. Modelling 31 , 107–113. · Zbl 1042.60521 · doi:10.1016/S0895-7177(00)00077-7
[10] Feller, W. (1968). An Introduction to Probability Theory and Its Applications , Vol. 1, 3rd edn. John Wiley, New York. · Zbl 0155.23101
[11] Good, P. (1968). The limiting behavior of transient birth and death processes conditioned on survival. J. Austral. Math. Soc. 8 , 716–722. · Zbl 0185.46002 · doi:10.1017/S1446788700006534
[12] Granovsky, B. L. and Zeifman, A. I. (1997). The decay function of nonhomogeneous birth–death processes, with applications to mean-field models. Stoch. Process. Appl. 72 , 105–120. · Zbl 0942.60075 · doi:10.1016/S0304-4149(97)00085-9
[13] Granovsky, B. L. and Zeifman, A. I. (2000). The \(N\)-limit of spectral gap of a class of birth–death Markov chains. Appl. Stoch. Models Business Industry 16 , 235–248. · Zbl 0972.60033 · doi:10.1002/1526-4025(200010/12)16:4<235::AID-ASMB415>3.0.CO;2-S
[14] Granovsky, B. L. and Zeifman, A. I. (2004). Nonstationary queues: estimation of the rate of convergence. Queueing Systems 46 , 363–388. · Zbl 1056.90030 · doi:10.1023/B:QUES.0000027991.19758.b4
[15] Jacka, S. D. and Roberts, G. O. (1995). Weak convergence of conditioned processes on a countable state space. J. Appl. Prob. 32 , 902–916. · Zbl 0839.60069 · doi:10.2307/3215203
[16] Karlin, S. and McGregor, J. L. (1957). The differential equations of birth-and-death processes, and the Stieltjes moment problem. Trans. Amer. Math. Soc. 85 , 589–646. · Zbl 0091.13801 · doi:10.2307/1992942
[17] Karlin, S. and Tavaré, S. (1982). Linear birth and death processes with killing. J. Appl. Prob. 19 , 477–487. · Zbl 0495.60086 · doi:10.2307/3213507
[18] Kartashov, N. V. (1998). Calculation of the exponential ergodicity exponent for birth–death processes. Theory Prob. Math. Statist. 57 , 53–60. · Zbl 0948.60079
[19] Kijima, M. (1992). Evaluation of the decay parameter for some specialized birth–death processes. J. Appl. Prob. 29 , 781–791. · Zbl 0764.60119 · doi:10.2307/3214712
[20] Kingman, J. F. C. (1963). The exponential decay of Markov transition probabilities. Proc. London Math. Soc. 13 , 337–358. · Zbl 0154.43003 · doi:10.1112/plms/s3-13.1.337
[21] Lenin, R. B., Parthasarathy, P. R., Scheinhardt, W. R. W. and van Doorn, E. A. (2000). Families of birth–death processes with similar time-dependent behaviour. J. Appl. Prob. 37 , 835–849. · Zbl 0973.60087 · doi:10.1239/jap/1014842840
[22] Pakes, A. G. (1995). Quasi-stationary laws for Markov processes: examples of an always proximate absorbing state. Adv. Appl. Prob. 27 , 120–145. · Zbl 0819.60065 · doi:10.2307/1428100
[23] Van Doorn, E. A. (1985). Conditions for exponential ergodicity and bounds for the decay parameter of a birth–death process. Adv. Appl. Prob. 17 , 514–530. · Zbl 0597.60080 · doi:10.2307/1427118
[24] Van Doorn, E. A. (1991). Quasi-stationary distributions and convergence to quasi-stationarity of birth–death processes. Adv. Appl. Prob. 23 , 683–700. · Zbl 0736.60076 · doi:10.2307/1427670
[25] Van Doorn, E. A. (2002). Representations for the rate of convergence of birth–death processes. Theory Prob. Math. Statist. 65 , 37–43. · Zbl 1026.60100
[26] Van Doorn, E. A. and Zeifman, A. I. (2005). Birth–death processes with killing. To appear in Statist. Prob. Lett. · Zbl 1065.60121
[27] Zeifman, A. I. (1991). Some estimates of the rate of convergence for birth and death processes. J. Appl. Prob. 28 , 268–277. · Zbl 0738.60088 · doi:10.2307/3214865
[28] Zeifman, A. I. (1995). On the estimation of probabilities for birth and death processes. J. Appl. Prob. 32 , 623–634. · Zbl 0846.60073 · doi:10.2307/3215117
[29] Zeifman, A. I. (1995). Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes. Stoch. Process. Appl. 59 , 157–173. · Zbl 0846.60084 · doi:10.1016/0304-4149(95)00028-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.