×

Factorizable groups and formations. (English) Zbl 1082.20005

Let \(\mathcal F\) be a saturated formation of finite groups that is locally defined by the formation function \(f\) (called “local satellite” of \(\mathcal F\)), i.e., \({\mathcal F}=\text{LF}(f)\). Such a satellite is called semi-integrated if, for each prime \(p\), either \(f(p)\subseteq\mathcal F\) or \(f(p)=\mathcal E\), the class of all groups. The central concept of the paper is the following: an element \(x\) of a group \(G\) is called a \(Z_{f,G}\)-element if there exists an \(f\)-central chief factor \(H/L\) of \(G\) such that \(x\in H\setminus L\).
Using this definition, the authors prove the following main results: Suppose that \({\mathcal F}=\text{LF}(f)\), where \(f\) is semi-integrated and let \(G\) be a group. Denote by \(\omega\) the set of all primes \(p\) such that \(f(p)\neq\mathcal E\). (i) If, for each \(p\in\omega\), every \(x\in G_p\setminus\Phi(G_p)\) is a \(Z_{f,G}\)-element, where \(G_p\) is a Sylow \(p\)-subgroup of \(G\), then \(G\in\mathcal F\) (Theorem 3.1). (ii) If, for each \(p\in\omega\), \(G\) possesses Abelian Sylow \(p\)-subgroups and every cyclic \(p\)-subgroup complemented in a Sylow \(p\)-subgroup of \(G\) is generated by a \(Z_{f,G}\)-element, then \(G\in\mathcal F\) (Theorem 3.2).

MSC:

20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20D40 Products of subgroups of abstract finite groups
Full Text: DOI

References:

[1] Al-Sharo, Kh. A. and Shemetkov, L. A.: On subgroups of prime order in a finite group, Ukr. Mat. Zh. 54(6) (2002), 745-752. · Zbl 1008.20013 · doi:10.1023/A:1021704018283
[2] Carter, R., Fischer, B. and Hawkes, T.: Extreme classes of finite soluble groups, J. Algebra 9 (1968), 285-313. · Zbl 0177.03902 · doi:10.1016/0021-8693(68)90027-6
[3] Chernikova (Baeva), N. V.: Completely factorizable groups, Dokl. Akad. Nauk SSSR 92 (1953), 877-880.
[4] Chernikova (Baeva), N. V.: Groups with complemented subgroups, Mat. Sb. 39(81) (1956), 273-292.
[5] Chernikov, S. N.: Finite supersoluble groups with Abelian Sylow subgroups, In: Groups Defined by the Properties of Systems of Subgroups, Math. Inst. Akad. Nauk USSR, Kiev, 1979, 3-15.
[6] Chernikov, S. N.: Groups with Prescribed Properties of a System of Subgroups, Nauka, Moscow, 1980. · Zbl 0486.20020
[7] Doerk, K. and Hawkes, T.: Finite Soluble Groups, Walter de Gruyter, Berlin, 1992. · Zbl 0753.20001
[8] Hall, P.: Complemented groups, J. London Math. Soc. 12 (1937), 201-204. · Zbl 0016.39301 · doi:10.1112/jlms/s1-12.2.201
[9] Huppert, B.: Endlicher Gruppen I, Springer, Berlin, 1967. · Zbl 0217.07201
[10] Monakhov, V. C.: On a product of two groups, one of which contains a cyclic subgroup of index ?2, Mat. Zametki 16(2) (1974), 285-295.
[11] Shemetkov, L. A.: The existence of ?-complements to normal subgroups of finite groups, Dokl. Akad. Nauk SSSR 195 (1970), 50-52. · Zbl 0221.20027
[12] Shemetkov, L. A.: Complements and supplements to normal subgroups of finite groups, Ukr. Mat. Zh. 23 (1971), 678-689. · Zbl 0227.20006
[13] Shemetkov, L. A.: The formation properties of finite groups, Dokl. Akad. Nauk SSSR 204 (1972), 1324-1327. · Zbl 0267.20017
[14] Shemetkov, L. A.: Formations of Finite Groups, Nauka, Moscow, 1978. · Zbl 0496.20014
[15] Tchounikhin, S.: Simplicit? du groupe fini et les ordres de ses classes d??l?ments conjugu?s, C. R. Acad. Sci. Paris 191 (1930), 397-399. · JFM 56.0133.02
[16] Vedernikov, V. A. and Kuleshov, N. I.: A characterization of finite supersoluble groups, Problems in Algebra 9 (1996), 107-113. · Zbl 0905.20012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.