×

Production/clearing models under continuous and sporadic reviews. (English) Zbl 1081.90002

Summary: We consider production/clearing models where random demand for a product is generated by customers (e.g., retailers) who arrive according to a compound Poisson process. The product is produced uniformly and continuously and added to the buffer to meet future demands. Allowing to operate the system without a clearing policy may result in high inventory holding costs. Thus, in order to minimize the average cost for the system we introduce two different clearing policies (continuous and sporadic review) and consider two different issuing policies (“all-or-some” and “all-or-none”) giving rise to four distinct production/clearing models. We use tools from level crossing theory and establish integral equations representing the stationary distribution of the buffer’s content level. We solve the integral equations to obtain the stationary distributions and develop the average cost objective functions involving holding, shortage and clearing costs for each model. We then compute the optimal value of the decision variables that minimize the objective functions. We present numerical examples for each of the four models and compare the behaviour of different solutions.

MSC:

90B05 Inventory, storage, reservoirs
90B22 Queues and service in operations research
90B30 Production models
Full Text: DOI

References:

[1] J. Abate and W. Whitt, ”Numerical inversion of Laplace transforms of probability distributions,” ORSA Journal on Computing vol. 7 pp. 36–43, 1995. · Zbl 0821.65085
[2] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover: New York, 1965. · Zbl 0171.38503
[3] M. S. Bazaraa and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, John Wiley: New York, 1979. · Zbl 0476.90035
[4] R. J. Boucherie and O. J. Boxma, ”The workload in the M/G/1 queue with work removal,” Probability in the Engineering and Informational Sciences vol. 10 pp. 261–277, 1996. · Zbl 1095.60510 · doi:10.1017/S0269964800004320
[5] O. J. Boxma, D. Perry, and W. Stadje, ”Clearing models for M/G/1 queues,” Queueing Systems vol. 38 pp. 287–306, 2001. · Zbl 1024.90020 · doi:10.1023/A:1010903605577
[6] B. W. Char, Maple 8 Learning Guide. Waterloo Maple, Waterloo: Canada, 2002.
[7] J. W. Cohen, ”On up- and down-crossings,” Journal of Applied Probability vol. 14 pp. 405–410, 1977. · Zbl 0365.60108 · doi:10.2307/3213014
[8] B. T. Doshi, ”Level crossing analysis of queues.” In U. N. Bhat and I. V. Basawa (eds.), Queueing and Related Models, pp. 3–33, Oxford University Press: Oxford, 1992. · Zbl 0783.60093
[9] E. Gelenbe and P. Glynn, ”Queues with negative arrivals,” Journal of Applied Probability vol. 28 pp. 245–250, 1991. · Zbl 0744.60110 · doi:10.2307/3214756
[10] P. G. Harrison and E. Pitel, ”Sojourn times in single-server queues with negative customers,” Journal of Applied Probability vol. 30 pp. 943–963, 1993. · Zbl 0787.60116 · doi:10.2307/3214524
[11] P. G. Harrison and E. Pitel, ”The M/G/1 queue with negative customers,” Advances in Applied Probability vol. 28 pp. 540–566, 1996. · Zbl 0861.60088 · doi:10.2307/1428071
[12] K. M. Heal, M. L. Hansen, and K. M. Rickard, Maple V Learning Guide, Springer-Verlag: New York, 1998.
[13] O. Kella and M. Miyazawa, ”Parallel fluid queues with constant inflows and simultaneous random reductions,” Journal of Applied Probability vol. 38(3) pp. 609–620, 2001. · Zbl 0991.60091
[14] D. Perry and M. J. M. Posner, ”Control policies for two classes of inventory systems via a duality equivalence relationship,” Probability in the Engineering and Informational Sciences vol. 3 pp. 561–579, 1989. · Zbl 1134.90308 · doi:10.1017/S0269964800001388
[15] D. Perry and M. J. M. Posner, ”Analysis of production/inventory systems with several production rates,” Stochastic Models vol. 6 pp. 99–116, 1990. · Zbl 0701.60095 · doi:10.1080/15326349908807138
[16] D. Perry and M. J. M. Posner, ”A mountain process with state dependent input and output and a correlated dam,” Operations Research Letters vol. 30(4) pp. 245–251, 2002. · Zbl 1049.90006 · doi:10.1016/S0167-6377(02)00178-5
[17] D. Perry and W. Stadje, ”Disasters in a inventory system for perishable items,” Advances in Applied Probability vol. 33 pp. 61–75, 2001. · Zbl 0986.90003 · doi:10.1239/aap/999187897
[18] D. Perry, W. Stadje, and S. Zacks, ”The M/G/1 queue with finite workload capacity,” Queueing Systems vol. 39 pp. 7–22, 2001. · Zbl 1002.90014 · doi:10.1023/A:1017931515538
[19] S. M. Roberts and J. S. Shipman, Two-Point Boundary Value Problems: Shooting Methods, American Elsevier: New York, 1972. · Zbl 0239.65061
[20] S. Ross, Stochastic Processes, John Wiley: New York, 1983.
[21] R. Serfozo and S. Stidham, ”Semi-stationary clearing processes,” Stochastic Processes and Their Applications vol. 6 pp. 165–178, 1978. · Zbl 0372.60146 · doi:10.1016/0304-4149(78)90058-3
[22] S. Stidham, ”Stochastic clearing systems,” Stochastic Processes and Their Applications vol. 2 pp. 85–113, 1974. · Zbl 0281.60103 · doi:10.1016/0304-4149(74)90014-3
[23] S. Stidham, ”Cost models for stochastic clearing systems,” Operations Research vol. 25 pp. 100–127, 1977. · Zbl 0371.90069 · doi:10.1287/opre.25.1.100
[24] S. Stidham, ”Clearing systems and (s, S) inventory systems with nonlinear costs and positive leadtimes,” Operations Research vol. 34 pp. 276–280, 1986. · Zbl 0618.90027 · doi:10.1287/opre.34.2.276
[25] R. Wolff, Stochastic Modeling and the Theory of Queues, Prentice-Hall: Englewood Cliffs, NJ, 1989. · Zbl 0701.60083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.