×

Covers for monoids. (English) Zbl 1081.20069

A monoid \(M\) is said to be an extension of a submonoid \(T\) by a group \(G\) if there is a homomorphism \(\varphi\colon M\to G\) such that \(T=\varphi^{-1}(1)\). Given a monoid \(M\) and a submonoid \(T\), if there is a monoid \(\widehat M\) with a homomorphism \(\theta\colon\widehat M\to M\) such that \(\widehat M\) is an extension of a submonoid \(\widehat T\) by a group and \(\theta\) maps \(\widehat T\) isomorphically onto \(T\), then such a monoid \(\widehat M\) is said to be a \(T\)-cover of \(M\).
The main results in the paper are the following: (1) several characterizations of when a monoid is an extension of a given submonoid by a group (Theorem 4.5); (2) a sufficient condition, in terms of a monoid \(M\) and its submonoid \(T\), for \(M\) to admit a \(T\)-cover (Theorem 5.1).
These rather general and remarkable results, which extend considerably many results in the area and for whose precise statements the reader is referred to the paper, are then specialized to particular classes of monoids of interest, namely: (1) monoids which have a minimum group congruence; (2) \(E\)-dense monoids; (3) regular monoids; and (4) finite monoids. – Group actions on categories play an important role in the characterizations and proofs of the main results.

MSC:

20M10 General structure theory for semigroups
20M50 Connections of semigroups with homological algebra and category theory
Full Text: DOI

References:

[1] Almeida, J.; Pin, J.-E.; Weil, P., Semigroups whose idempotents form a subsemigroup, Math. Proc. Cambridge Philos. Soc., 111, 241-253 (1992) · Zbl 0751.20042
[2] Ash, C. J., Finite idempotent-commuting semigroups, (Goberstein, S.; Higgins, P., Semigroups and their Applications (1987), Reidel: Reidel Dordrecht), 13-23 · Zbl 0623.20048
[3] Ash, C. J., Finite semigroups with commuting idempotents, J. Austral. Math. Soc. Ser. A, 43, 81-90 (1987) · Zbl 0634.20032
[4] Ash, C. J., Inevitable sequences and a proof of the type II conjecture, (Proc. Monash Conf. on Semigroup Theory (1991), World Scientific: World Scientific Singapore), 31-42 · Zbl 1039.20505
[5] Ash, C. J., Inevitable graphs: A proof of the type II conjecture and some related decision procedures, Internat. J. Algebra Comput., 1, 127-146 (1991) · Zbl 0722.20039
[6] Barr, M.; Wells, C., Category Theory for Computing Science (1990), Prentice Hall: Prentice Hall New York · Zbl 0714.18001
[7] Birget, J. C.; Margolis, S.; Rhodes, J., Semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc., 41, 161-184 (1990) · Zbl 0692.20046
[8] Catino, F.; Miccoli, M. M., On semidirect product of semigroup, Note Mat., 9, 189-194 (1989) · Zbl 0736.20037
[9] Chang, C. C.; Keisler, H. J., Model Theory (1977), North-Holland: North-Holland Amsterdam · Zbl 0697.03022
[10] Clifford, A. H.; Preston, G. B., The Algebraic Theory of Semigroups, Vol. I (1961), Amer. Math. Soc: Amer. Math. Soc Providence, RI · Zbl 0111.03403
[11] Clifford, A. H.; Preston, G. B., The Algebraic Theory of Semigroups, Vol. II (1967), Amer. Math. Soc: Amer. Math. Soc Providence, RI · Zbl 0178.01203
[12] Cohn, P. M., Universal Algebra (1965), Harper & Row: Harper & Row New York · Zbl 0141.01002
[13] Dekov, D. V., HNN extensions of semigroups, Semigroup Forum, 49, 83-87 (1994) · Zbl 0803.20039
[14] Dubreil, P., Contribution à la théorie des demigroupes, Mém. Acad. Sci. Inst. France, 63, 3, 52 (1941) · Zbl 0026.19605
[15] Easdown, D., A new proof that regular biordered sets come from regular semigroups, Proc. Roy. Soc. Edinburgh Sect. A, 96, 109-116 (1984) · Zbl 0559.20043
[16] Feigenbaum, R., Congruences on regular semigroups, Semigroup Forum, 17, 373-377 (1979) · Zbl 0433.20043
[17] FitzGerald, D. G., On inverses of products of idempotents in regular semigroups, J. Austral. Math. Soc. Ser. A, 13, 335-337 (1972) · Zbl 0244.20079
[18] Fountain, J., \(E\)-unitary dense covers of \(E\)-dense monoids, Bull. London Math. Soc., 22, 353-358 (1990) · Zbl 0724.20040
[19] Fountain, J., 〈\(E\)〉-dense monoids, (Hall, T. E.; Jones, P. R.; Meakin, J. C., Monash Conf. on Semigroup Theory (1991), World Scientific: World Scientific Singapore), 68-76 · Zbl 1039.20507
[20] Goldblatt, R., Topoi: The Categorical Analysis of Logic (1984), North-Holland: North-Holland Amsterdam · Zbl 0528.03039
[21] Gomes, G. M.S., A characterization of the group congruences on a semigroup, Semigroup Forum, 46, 48-53 (1993) · Zbl 0773.20028
[22] Hall, T. E.; Munn, W. D., The hypercore of a semigroup, Proc. Edinburgh Math. Soc. (2), 28, 107-112 (1985) · Zbl 0569.20050
[23] Hanumantha Rao, S.; Lakshmi, P., Group congruences on eventually regular semigroups, J. Austral. Math. Soc. Ser. A, 45, 320-325 (1988) · Zbl 0665.20032
[24] Hatcher, W. S., Foundations of Mathematics (1968), Saunders: Saunders Philadelphia · Zbl 0191.28205
[25] Higgins, P. J., Categories and Groupoids (1971), Van Nostrand: Van Nostrand London · Zbl 1087.20038
[26] Howie, J. M., Embedding theorems for semigroups, Quart. J. Math., 14, 254-258 (1963) · Zbl 0124.01702
[27] Howie, J. M., Fundamentals of Semigroup Theory (1995), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0835.20077
[28] Lallement, G.; Petrich, M., Décomposition \(I\)-matricielles d’un demigroupe, J. Math. Pures Appl. (9), 45, 67-117 (1966) · Zbl 0136.26602
[29] LaTorre, D. R., Group congruences on regular semigroups, Semigroup Forum, 24, 327-340 (1982) · Zbl 0487.20039
[30] Lawvere, F. W., The category of categories as a foundation for mathematics, (Proc. Conf. on Categorical Algebra. Proc. Conf. on Categorical Algebra, La Jolla, 1965 (1966), Springer-Verlag: Springer-Verlag Berlin), 1-20 · Zbl 0192.09702
[31] Levi, F. W., On semigroups, Bull. Calcutta Math. Soc., 36, 141-146 (1944) · Zbl 0061.02405
[32] Levi, F. W., On semigroups II, Bull. Calcutta Math. Soc., 38, 123-124 (1946) · Zbl 0061.02406
[33] MacLane, S., Categories for the Working Mathematician (1971), Springer-Verlag: Springer-Verlag Berlin · Zbl 0232.18001
[34] Margolis, S. W.; Pin, J.-E., Graphs, inverse semigroups and languages, (Byleen, K.; Jones, P. R.; Pastijn, F. J., Proc. 1984 Marquette Conf. on Semigroups (1985), Marquette Univ: Marquette Univ Milwaukee), 85-112 · Zbl 0604.20061
[35] Margolis, S. W.; Pin, J.-E., Inverse semigroups and extensions of groups by semilattices, J. Algebra, 110, 277-297 (1987) · Zbl 0625.20043
[36] Margolis, S. W.; Pin, J.-E., Inverse semigroups and varieties of finite semigroups, J. Algebra, 110, 306-323 (1987) · Zbl 0625.20045
[37] Masat, F. E., Right group and group congruences on a regular semigroup, Duke Math. J., 40, 393-402 (1973) · Zbl 0267.20057
[38] McAlister, D. B., Groups, semilattices and inverse semigroups, Trans. Amer. Math. Soc., 192, 227-244 (1974) · Zbl 0297.20071
[39] McAlister, D. B., Groups, semilattices and inverse semigroups II, Trans. Amer. Math. Soc., 196, 351-370 (1974) · Zbl 0297.20072
[40] McAlister, D. B., On a problem of M.P. Schützenberger, Proc. Edinburgh Math. Soc. (2), 23, 243-247 (1980) · Zbl 0461.20039
[41] Mitsch, H., Subdirect products of \(E\)-inversive semigroups, J. Austral. Math. Soc. Ser. A, 48, 66-78 (1990) · Zbl 0691.20050
[42] Nambooripad, K. S.S., Structure of regular semigroups I, Mem. Amer. Math. Soc., 224 (1979) · Zbl 0457.20051
[43] Petrich, M., Sur certaines classes de demigroupes I, Bull. Cl. Sci. Acad. Roy. Belgique, 49, 785-798 (1967) · Zbl 0124.25704
[44] Petrich, M., Sur certaines classes de demigroupes II, Bull. Cl. Sci. Acad. Roy. Belgique, 49, 888-900 (1967) · Zbl 0124.25704
[45] Petrich, M., Inverse Semigroups (1984), Wiley: Wiley New York · Zbl 0546.20053
[46] Pin, J.-E., Variétés de langages formels, Varieties of Formal Languages (1986), Masson: Masson Paris: North Oxford: Masson: Masson Paris: North Oxford London, English translation · Zbl 0636.68093
[47] Pin, J.-E., On a conjecture of Rhodes, Semigroup Forum, 39, 1-15 (1989) · Zbl 0673.20034
[48] Pin, J.-E., Finite semigroups as categories, ordered semigroups or compact semigroups, (Hofmann, K. H.; Mislove, M. W., Semigroup Theory and its Applications. Semigroup Theory and its Applications, London Math. Soc. Lecture Note Ser., Vol. 231 (1996), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 107-121 · Zbl 0911.20041
[49] Rhodes, J., The relationship of Al Clifford’s work to the current theory of semigroups, (Hofmann, K. H.; Mislove, M. W., Semigroup Theory and its Applications. Semigroup Theory and its Applications, London Math. Soc. Lecture Note Ser., Vol. 231 (1996), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 43-51 · Zbl 0906.20040
[50] Shutov, Ě. G., Embeddings of semigroups into simple and complete semigroups, Mat. Sb., 62, 104, 496-511 (1963), (in Russian) · Zbl 0134.02501
[51] Szendrei, M. B., On a pull-back diagram for orthodox semigroups, Semigroup Forum, 20, 1-10 (1980), corrigendum: 25 (1982) 311-324 · Zbl 0438.20046
[52] Szendrei, M. B., A generalization of McAlister’s \(P\)-theorem for \(E\)-unitary regular semigroups, Acta Sci. Math., 51, 229-249 (1987) · Zbl 0631.20050
[53] Takizawa, K., \(E\)-unitary \(R\)-unipotent semigroups, Bull. Tokyo Gakugei Univ. (IV), 30, 21-33 (1978) · Zbl 0417.20052
[54] Takizawa, K., Orthodox semigroups and \(E\)-unitary regular semigroups, Bull. Tokyo Gakugei Univ. (IV), 31, 41-43 (1979) · Zbl 0446.20040
[55] Thierrin, G., Demigroupes inversés et rectangulaires, Bull. Cl. Sci. Acad. Roy. Belgique, 41, 83-92 (1955) · Zbl 0064.02003
[56] Tilson, B., Categories as algebra: an essential ingredient in the theory of monoids, J. Pure Appl. Algebra, 48, 83-198 (1987) · Zbl 0627.20031
[57] Trotter, P. G., Congruence extensions in regular semigroups, J. Algebra, 137, 166-179 (1991) · Zbl 0714.20053
[58] Trotter, P. G., Covers for regular semigroups and an application to complexity, J. Pure Appl. Algebra, 105, 319-328 (1995) · Zbl 0845.20050
[59] Trotter, P. G.; Jiang, Z., Covers for regular semigroups, Southeast Asian Bull. Math., 18, 157-161 (1994) · Zbl 0828.20061
[60] Jiang, Z., \(E\)-unitary inversive covers for E-inversive semigroups whose idempotents form a subsemigroup, Southeast Asian Bull. Math., 18, 59-64 (1994) · Zbl 0803.20040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.