×

On representation, boundedness and convergence of Hankel-\(K\{M_p\}'\) generalized functions. (English) Zbl 1080.46023

Let \(\mu\geq-1/2\) and let \(\{M_p\}_{p=0}^\infty\) be a sequence of continuous functions defined on \(I=(0,\infty)\) such that \[ 1=M_0(x)\leq M_1(x)\leq M_2(x)\leq\dots. \] Then \(K_\mu\{M_p\}\) is a Hankel-\(K\{M_p\}\) space of order \(\mu\) if it consists of all functions \(\varphi\in C^\infty(I)\) such that \[ | | \varphi| | _{\mu,p} =\max_{0\leq k\leq p} \sup_{x\in I}\left| M_p(x) (x^{-1}D)^k x^{-\mu-1/2}\varphi(x)\right| <\infty\quad (p\in \mathbb N). \] By \(K_\mu\{M_p\}'\) the dual space of \(K_\mu\{M_p\}\) is denoted. In this paper, the author gives characterizations of membership, boundedness and convergence in \(K_\mu\{M_p\}'\), using the same technique as A. Kaminski [Stud. Math. 77, 499–508 (1984; Zbl 0547.46019)].

MSC:

46F05 Topological linear spaces of test functions, distributions and ultradistributions
46F12 Integral transforms in distribution spaces

Citations:

Zbl 0547.46019
Full Text: DOI

References:

[1] Gelfand, I.M. and G.E. Shilov: Generalized Functions, Vol. 2. New York: Aca- demic Press 1968.
[2] Kaminski, A.: Remarks on K{Mp} -spaces. Studia Math. 77 (1984), 499 - 508. · Zbl 0547.46019
[3] Marrero, I.: A property characterizing Montel Hankel-K{Mp} spaces. Integral Transform. Spec. Funct. 12 (2001), 65 - 76. · Zbl 1037.46034 · doi:10.1080/10652460108819334
[4] Marrero, I.: Multipliers of Hankel-K{Mp} spaces. Integral Transform. Spec. Funct. 12 (2001), 179 - 200. · Zbl 1071.46026 · doi:10.1080/10652460108819343
[5] Marrero, I.: Hankel-K{Mp} spaces. Integral Transform. Spec. Funct. 13 (2002), 379 - 401. · Zbl 1027.46040 · doi:10.1080/10652460213522
[6] Zemanian, A.H.: The Hankel transformation of certain distributions of rapid growth. SIAM J. Appl. Math. 14 (1966), 678 - 690. · Zbl 0154.13804 · doi:10.1137/0114056
[7] Zemanian, A.H.: Generalized Integral Transformations. New York: Inter- science 1968. · Zbl 0181.12701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.