×

Self-creating brane worlds. (English) Zbl 1079.83563

Summary: Several boundary conditions for the universe have been hitherto suggested, basing on different philosophical approaches. In particular, one may choose between the notions that the universe was created either from nothing or by itself. The quantum state of a universe created from nothing has been already formulated under distinct standpoints by Hartle, Hawking, Vilenkin and others. In this paper we have concentrated on deriving a quantum theory for a self-created universe. Thus, we have first considered the spacetime structure of a six-dimensional de Sitter space with a multiply connected region and, by using a cutting and pasting procedure, we have then been able to show that one can introduce a four-brane in such a spacetime whose evolution can also be considered within the context of ekpyrotic and cyclic universes, and quantized in terms of the sum-over-histories formulation, according to the rules of the generalized quantum theory developed by Hartle.

MSC:

83F05 Relativistic cosmology
83E30 String and superstring theories in gravitational theory
83C15 Exact solutions to problems in general relativity and gravitational theory
81T20 Quantum field theory on curved space or space-time backgrounds
Full Text: DOI

References:

[1] Gott J. R., Phys. Rev. 58 pp 023501– (1998)
[2] González-Díaz P. F., Phys. Rev. 59 pp 123513– (1999)
[3] Hartle J. B., Phys. Rev. 28 pp 2960– (1983)
[4] DOI: 10.1016/0370-2693(82)90866-8 · doi:10.1016/0370-2693(82)90866-8
[5] DOI: 10.1103/RevModPhys.20.367 · Zbl 1371.81126 · doi:10.1103/RevModPhys.20.367
[6] Hartle J. B., Int. J. Mod. Phys. 16 pp 1– (2001)
[7] Hartle J. B., Phys. Rev. 49 pp 6543– (1994)
[8] DOI: 10.1088/1126-6708/2001/10/026 · doi:10.1088/1126-6708/2001/10/026
[9] Garriga J., Phys. Rev. 62 pp 043523– (2000)
[10] González-Díaz P. F., Phys. Rev. 36 pp 3651– (1987) · doi:10.1103/PhysRevB.36.3651
[11] DOI: 10.1007/BF02710419 · doi:10.1007/BF02710419
[12] DOI: 10.1103/PhysRevLett.61.1446 · doi:10.1103/PhysRevLett.61.1446
[13] DOI: 10.1016/S0550-3213(99)00696-3 · Zbl 0965.83036 · doi:10.1016/S0550-3213(99)00696-3
[14] Hiscock W. A., Phys. Rev. 26 pp 1225– (1982)
[15] DOI: 10.1023/A:1002709503156 · Zbl 0978.83022 · doi:10.1023/A:1002709503156
[16] Hawking S. W., Phys. Rev. 46 pp 603– (1992)
[17] DOI: 10.1103/PhysRevLett.83.4690 · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[18] Bouhmadi M., Phys. Rev. 65 pp 063510– (2002)
[19] Khoury J., Phys. Rev. 64 pp 123522– (2001)
[20] Steinhardt P. J., Phys. Rev. 65 pp 126003– (2002)
[21] Page D. N., Phys. Rev. 34 pp 2267– (1986)
[22] DOI: 10.1103/PhysRevLett.91.071301 · doi:10.1103/PhysRevLett.91.071301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.