×

Braneworld black holes in cosmology and astrophysics. (English) Zbl 1078.83023

Summary: The braneworld description of our universe entails a large extra dimension and a fundamental scale of gravity that might be lower by several orders of magnitude compared to the Planck scale. An interesting consequence of the braneworld scenario is in the nature of spherically symmetric vacuum solutions to the brane gravitational field equations which could represent black holes with properties quite distinct compared to ordinary black holes in 4-dimensions. We discuss certain key features of some braneworld black hole geometries. Such black holes are likely to have diverse cosmological and astrophysical ramifications. The cosmological evolution of primordial braneworld black holes is described highlighting their longevity due to modified evaporation and effective accretion of radiation during the early braneworld high energy era. Observational abundance of various evaporation products of the black holes at different eras impose constraints on their initial mass fraction. Surviving primordial black holes could be candidates of dark matter present in galactic haloes. We discuss gravitational lensing by braneworld black holes. Observables related to the relativistic images of strong field gravitational lensing could in principle be used to distinguish between different braneworld black hole metrics in future observations.

MSC:

83C57 Black holes
83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83F05 Relativistic cosmology
83B05 Observational and experimental questions in relativity and gravitational theory
85A40 Astrophysical cosmology

References:

[1] Maartens R., Living Rev. Rel. 7 pp 1–
[2] DOI: 10.1103/PhysRevLett.83.3370 · Zbl 0946.81063 · doi:10.1103/PhysRevLett.83.3370
[3] DOI: 10.1103/PhysRevLett.83.4690 · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[4] DOI: 10.1088/0264-9381/20/9/202 · Zbl 1033.83027 · doi:10.1088/0264-9381/20/9/202
[5] DOI: 10.1103/PhysRevLett.84.2778 · Zbl 0949.83019 · doi:10.1103/PhysRevLett.84.2778
[6] Giddings S. B., J. High Energy Phys. 0003 pp 023–
[7] Shiromizu T., Phys. Rev. 62 pp 024012–
[8] Dadhich N., Phys. Lett. 487 pp 1– · Zbl 0961.83060 · doi:10.1016/S0370-2693(00)00798-X
[9] DOI: 10.1016/0003-4916(86)90186-7 · Zbl 0601.53081 · doi:10.1016/0003-4916(86)90186-7
[10] Argyres P., Phys. Lett. 441 pp 96– · doi:10.1016/S0370-2693(98)01184-8
[11] Kanti P., Int. J. Mod. Phys. 19 pp 4899– · Zbl 1066.83001 · doi:10.1142/S0217751X04018324
[12] Guedens R., Phys. Rev. 66 pp 043513–
[13] DOI: 10.1103/PhysRevLett.90.031303 · Zbl 1267.83097 · doi:10.1103/PhysRevLett.90.031303
[14] Guedens R., Phys. Rev. 66 pp 083509–
[15] Clancy D., Phys. Rev. 68 pp 023507–
[16] Majumdar A. S., Phys. Lett. 607 pp 219– · doi:10.1016/j.physletb.2004.12.059
[17] DOI: 10.1103/PhysRevLett.91.021101 · doi:10.1103/PhysRevLett.91.021101
[18] Frolov V., Phys. Rev. 68 pp 044002–
[19] Kar S., Gen. Rel. Grav. 35 pp 10–
[20] Whisker R., Phys. Rev. 71 pp 064004–
[21] Sasaki M., Phys. Rev. 62 pp 024008–
[22] Chamblin A., Phys. Rev. 61 pp 065007–
[23] DOI: 10.1088/0264-9381/17/18/103 · Zbl 0972.83068 · doi:10.1088/0264-9381/17/18/103
[24] Dadhich N., Phys. Lett. 492 pp 357– · Zbl 0983.83031 · doi:10.1016/S0370-2693(00)01101-1
[25] Dadhich N., Phys. Lett. 518 pp 1– · Zbl 0971.83073 · doi:10.1016/S0370-2693(01)01057-7
[26] Casadio R., Phys. Rev. 65 pp 084040–
[27] Will C. M., Living Rev. Rel. 4 pp 4– · Zbl 1024.83003 · doi:10.12942/lrr-2001-4
[28] Germani C., Phys. Rev. 64 pp 124010–
[29] Dadhich N., Phys. Rev. 65 pp 064004–
[30] Shankaranarayanan S., Int. J. Mod. Phys. 13 pp 1095– · Zbl 1057.83012 · doi:10.1142/S0218271804005109
[31] Gregory R., J. Cosmol. Astropart. Phys. 10 pp 013–
[32] Kudoh H., Phys. Rev. 68 pp 024035–
[33] Emparan E., J. High Energy Phys. 0001 pp 007–
[34] Frolov V., Phys. Rev. 67 pp 084004–
[35] Stojkovic D., J. High Energy Phys. 0409 pp 061–
[36] Wiseman T., Phys. Rev. 65 pp 124007–
[37] DOI: 10.1007/978-3-540-40918-2_14 · doi:10.1007/978-3-540-40918-2_14
[38] Sendouda Y., Phys. Rev. 68 pp 103510–
[39] DOI: 10.1007/978-1-4612-2756-4 · doi:10.1007/978-1-4612-2756-4
[40] Bernardeau F., Theoretical and Observational Cosmology (1998)
[41] DOI: 10.1023/A:1012292927358 · Zbl 1009.83027 · doi:10.1023/A:1012292927358
[42] Bozza V., Phys. Rev. 66 pp 103001–
[43] Virbhadra K. S., Phys. Rev. 62 pp 084003–
[44] Eiroa E. F., Phys. Rev. 69 pp 063004–
[45] DOI: 10.1086/422309 · doi:10.1086/422309
[46] DOI: 10.1103/PhysRevLett.94.011603 · doi:10.1103/PhysRevLett.94.011603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.