×

On the fracture toughness of ferroelastic materials. (English) Zbl 1077.74534

Summary: The toughness enhancement due to domain switching near a steadily growing crack in a ferroelastic material is analyzed. The constitutive response of the material is taken to be characteristic of a polycrystalline sample assembled from randomly oriented tetragonal single crystal grains. The constitutive law accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger effects, reverse switching, and strain reorientation that can occur in these materials due to the non-proportional loading that arises near a propagating crack. Crack growth is assumed to proceed at a critical level of the crack tip energy release rate. Detailed finite element calculations are carried out to determine the stress and strain fields near the growing tip, and the ratio of the far field applied energy release rate to the crack tip energy release rate. The results of the finite element calculations are then compared to analytical models that assume the linear isotropic K-field solution holds for either the near tip stress or strain field. Ultimately, the model is able to account for the experimentally observed toughness enhancement in ferroelastic ceramics.

MSC:

74F15 Electromagnetic effects in solid mechanics
74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
82D45 Statistical mechanics of ferroelectrics
Full Text: DOI

References:

[1] Budiansky, B.; Hutchinson, J. W.; Lambropoulos, J. C., Continuum theory of dilatant transformation toughening in ceramics, Int. J. Solids Struct., 19, 337-355 (1983) · Zbl 0523.73078
[2] Cocks, A. C.F.; McMeeking, R. M., A phenomenological constitutive law for the behavior of ferroelectrics, Ferroelectrics, 228, 219-228 (1999)
[3] Dean, R.H., Hutchinson, J.W., 1980. Quasi-static steady crack growth in small scale yielding. In: Fracture Mechanics, ASTM-STP 700, pp. 383-405.; Dean, R.H., Hutchinson, J.W., 1980. Quasi-static steady crack growth in small scale yielding. In: Fracture Mechanics, ASTM-STP 700, pp. 383-405.
[4] Fang, D.; Li, C., Nonlinear electric-mechanical behavior of a soft PZT-51 ferroelectric ceramic, J. Mater. Sci., 34, 4001-4010 (1999)
[5] Fett, T.; Thun, G., Nonsymmetric deformation behavior of lead zirconate titanate determined in bending tests, J. Am. Ceram. Soc., 81, 269-272 (1998)
[6] Fett, T.; Müller, S.; Munz, D.; Thun, G., Nonsymmetry in the deformation behavior of PZT, J. Mater. Sci. Lett., 17, 261-265 (1998)
[7] Freund, L. B.; Hutchinson, J. W., High strain-rate crack growth in rate-dependent plastic solids, J. Mech. Phys. Solids, 33, 169-191 (1985)
[8] Frölich, A., 2001. Mikromechanisches modell zur ermittlung effektiver materialeigenschaften von piezoelektrischen polykristallen. Dissertation Thesis, Universität Karlsruhe, Germany.; Frölich, A., 2001. Mikromechanisches modell zur ermittlung effektiver materialeigenschaften von piezoelektrischen polykristallen. Dissertation Thesis, Universität Karlsruhe, Germany.
[9] Huber, J. E.; Fleck, N. A.; Landis, C. M.; McMeeking, R. M., A constitutive model for ferroelectric polycrystals, J. Mech. Phys. Solids, 47, 1663-1697 (1999) · Zbl 0973.74026
[10] Hutchinson, J.W., 1974. On steady quasi-static crack growth. Harvard University Report, Division of Applied Sciences, DEAP S-8.; Hutchinson, J.W., 1974. On steady quasi-static crack growth. Harvard University Report, Division of Applied Sciences, DEAP S-8.
[11] Hutchinson, J.W., 1979. A course on nonlinear fracture mechanics. Department of Solid Mechanics, Technical University of Denmark.; Hutchinson, J.W., 1979. A course on nonlinear fracture mechanics. Department of Solid Mechanics, Technical University of Denmark.
[12] Kamlah, M., Ferroelectric and ferroelastic piezoceramics—modeling and electromechanical hysteresis phenomena, Continuum Mech. Thermodyn., 13, 219-268 (2001) · Zbl 1049.74021
[13] Kreher, W., Influence of domain switching zones on the fracture toughness of ferroelectrics, J. Mech. Phys. Solids, 50, 1029-1050 (2002) · Zbl 1056.74053
[14] Landis, C. M., Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics, J. Mech. Phys. Solids, 50, 127-152 (2002) · Zbl 1023.74016
[15] Landis, C. M., Uncoupled, asymptotic mode III and mode E crack tip solutions in non-linear ferroelectric materials, Eng. Fract. Mech., 69, 13-23 (2002)
[16] Landis, C.M., 2003. On the strain saturation conditions in polycrystalline ferroelastic ceramics. J. Appl. Mech., in press.; Landis, C.M., 2003. On the strain saturation conditions in polycrystalline ferroelastic ceramics. J. Appl. Mech., in press. · Zbl 1110.74529
[17] Landis, C. M.; Pardoen, T.; Hutchinson, J. W., Crack velocity dependent toughness in rate dependent materials, Mech. Mater., 32, 663-678 (2000)
[18] Lucato, S. L.; Lupascu, D. C.; Rödel, J., Effect of poling direction on R-curve behavior in lead zirconate titanate, J. Am. Ceram. Soc., 83, 424-426 (2000)
[19] Lynch, C. S., The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT, Acta Mater., 44, 4137-4148 (1996)
[20] McMeeking, R. M.; Evans, A. G., Mechanics of transformation toughening in brittle materials, J. Am. Ceram. Soc., 65, 242-246 (1982)
[21] Meschke, F.; Raddatz, O.; Kolleck, A.; Schneider, G. A., R-curve behavior and crack-closure stresses in barium titanate and (Mg,Y)-PSZ ceramics, J. Am. Ceram. Soc., 83, 353-361 (2000)
[22] Oates, W.S., Lynch, C.S., Rödel, J., Lupascu, D., Aulbach, E., 2003. Investigation of subcritical crack growth in lead zirconate titanate. J. Am. Ceram. Soc., submitted for publication.; Oates, W.S., Lynch, C.S., Rödel, J., Lupascu, D., Aulbach, E., 2003. Investigation of subcritical crack growth in lead zirconate titanate. J. Am. Ceram. Soc., submitted for publication.
[23] Ponte Castañeda, P., Asymptotic fields in steady crack growth with linear strain-hardening, J. Mech. Phys. Solids, 35, 227-268 (1987) · Zbl 0601.73101
[24] Reece, M. J.; Guiu, F., Toughening produced by crack-tip-stress-induced domain reorientation in ferroelectric and/or ferroelastic materials, Philos. Mag. A, 82, 29-38 (2002)
[25] Rice, J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35, 379-386 (1968)
[26] Rice, J. R., Some remarks on elastic crack-tip stress fields, Int. J. Solids Struct., 8, 751-758 (1972) · Zbl 0245.73083
[27] Schäufele, A. B.; Härdtl, K. H., Ferroelastic properties of lead zirconate titanate ceramics, J. Am. Ceram. Soc., 79, 2637-2640 (1996)
[28] Yang, W.; Zhu, T., Switch toughening of ferroelectrics subjected to electric fields, J. Mech. Phys. Solids, 46, 291-311 (1998) · Zbl 0963.74022
[29] Zhu, T.; Yang, W., Toughness variation of ferroelectrics by polarization switch under non-uniform electric field, Acta Mater., 45, 4659-4702 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.