×

Collision versus collapse of droplets in coarsening of dewetting thin films. (English) Zbl 1076.76073

Summary: Thin films of viscous fluids coating solid surfaces can become unstable due to intermolecular forces, leading to break-up of the film into arrays of droplets. The long-time dynamics of the system can be represented in terms of coupled equations for the masses and positions of the droplets. Analysis of the decrease of energy of the system shows that coarsening, decreasing the number of droplets with increasing time, is favored. Here we describe the two coarsening mechanisms present in dewetting films: (i) mass exchange leading to collapse of individual drops, and (ii) spatial motion leading to droplet collisions and merging events. Regimes where each of mechanisms are dominant are identified, and the statistics of the coarsening process are explained.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76A20 Thin fluid films
80A22 Stefan problems, phase changes, etc.
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Becker, J.; Grun, G.; Seemann, R.; Mantz, H.; Jacobs, K.; Mecke, K. R.; Blossey, R., Complex dewetting scenarios captured by thin-film models, Nat. Mater., 2, 1, 59-63 (2003)
[2] Reiter, G., Dewetting of thin polymer films, Phys. Rev. Lett., 68, 1, 75-78 (1992)
[3] Sharma, A.; Khanna, R., Pattern formation in unstable thin liquid films, Phys. Rev. Lett., 81, 16, 3463-3466 (1998)
[4] Sharma, A.; Khanna, R., Pattern formation in unstable thin liquid films under the influence of antagonistic short- and long-range forces, J. Chem. Phys., 110, 10, 4929-4936 (1999)
[5] Xie, R.; Karim, A.; Douglas, J. F.; Han, C. C.; Weiss, R. A., Spinodal dewetting of thin polymer films, Phys. Rev. Lett., 81, 6, 1251-1254 (1998)
[6] Bischof, J.; Scherer, D.; Herminghaus, S.; Leiderer, P., Dewetting modes of thin metallic films: nucleation of holes and spinodal dewetting, Phys. Rev. Lett., 77, 8, 1536-1539 (1996)
[7] Ghatak, A.; Khanna, R.; Sharma, A., Dynamics and morphology of holes in dewetting thin films, J. Coll. Int. Sci., 212, 483-494 (1999)
[8] Thiele, U.; Velarde, M. G.; Neuffer, K.; Pomeau, Y., Film rupture in the diffuse interface model coupled to hydrodynamics, Phys. Rev. E, 64, 3, 031602 (2001)
[9] Thiele, U.; Velarde, M. G.; Neuffer, K., Dewetting: film rupture by nucleation in the spinodal regime, Phys. Rev. Lett., 87, 1, 016104 (2001)
[10] Seemann, R.; Herminghaus, S.; Jacobs, K., Dewetting patterns and molecular forces: a reconcilation, Phys. Rev. Lett., 86, 24, 5534-5537 (2001)
[11] Segalman, R. A.; Green, P. F., Dynamics of rims and the onset of spinodal dewetting at liquid/liquid interfaces, Macromolecules, 32, 801-807 (1999)
[12] Mitlin, V.; Petviashvilli, N. V., Nonlinear dynamics of dewetting: kinetically stable structures, Phys. Lett. A, 192, 323 (1994)
[13] Bertozzi, A. L.; Grun, G.; Witelski, T. P., Dewetting films: bifurcations and concentrations, Nonlinearity, 14, 6, 1569-1592 (2001) · Zbl 1006.35049
[14] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I: Interfacial free energy, J. Chem. Phys., 28, 258-267 (1957) · Zbl 1431.35066
[15] Pego, R. L., Front migration in the nonlinear Cahn-Hilliard equation, Proc. R. Soc. Lond. A, 422, 261-278 (1989) · Zbl 0701.35159
[16] Mitlin, V. S., Dewetting of a solid surface: analogy with spinodal decomposition, J. Coll. Int. Sci., 156, 491-497 (1993)
[17] Mitlin, V. S.; Petviashvili, N. V., Nonlinear dynamics of dewetting: kinetically stable structures, Phys. Lett. A, 192, 323-326 (1994)
[18] Oron, A.; Bankoff, S. G., Dewetting of a heated surface by an evaporating liquid film under conjoining/disjoing pressures, J. Coll. Int. Sci., 218, 152-166 (1999)
[19] Glasner, K. B.; Witelski, T. P., Coarsening dynamics of dewetting films, Phys. Rev. E, 67, 016302 (2003)
[20] Voorhees, P. W., The theory of Ostwald ripening, J. Stat. Phys., 38, 1-2, 231-252 (1985)
[21] Lifshitz, I. M.; Slyozov, V. V., The kinetics of precipitation from supersaturated solid solutions, J. Chem. Phys. Solids, 19, 35-50 (1961)
[22] Wagner, C., Theorie for alterung von niederschlagen durch umlosen, Z. Elektrochem., 65, 581-594 (1961)
[23] Niethammer, B.; Pego, R. L., On the initial-value problem in the Lifshitz-Slyozov-Wagner theory of Ostwald ripening, SIAM J. Math. Anal., 31, 3, 467-485 (2000), (electronic) · Zbl 0940.35133
[24] Niethammer, B.; Otto, F., Domain coarsening in thin films, Comm. Pure Appl. Math., 54, 3, 361-384 (2001) · Zbl 1029.82026
[25] Limary, R.; Green, P. F., Dynamics of droplets on the surface of a structured fluid film: late-stage coarsening, Langmuir, 19, 6, 2419-2424 (2003)
[26] de Gennes, P. G., Wetting: statics and dynamics, Rev. Mod. Phys., 57, 827-880 (1985)
[27] Oron, A.; Davis, S. H.; Bankoff, S. G., Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69, 3, 931-980 (1997)
[28] Pismen, L. M.; Pomeau, Y., Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics, Phys. Rev. E, 62, 2480-2492 (2000)
[29] Schwartz, L. W., Unsteady simulation of viscous thin-layer flows, (Free Surface Flows with Viscosity (1997), Computational Mechanics Publications: Computational Mechanics Publications Boston), 203-233
[30] Williams, M. B.; Davis, S. H., Nonlinear theory of film rupture, J. Coll. Int. Sci., 90, 220-228 (1982)
[31] Burelbach, J. P.; Bankoff, S. G.; Davis, S. H., Nonlinear stability of evaporating/condensing liquid films, J. Fluid Mech., 195, 463-494 (1988) · Zbl 0653.76035
[32] Glasner, K. B., Spreading of droplets under the influence of intermolecular forces, Phys. Fluids, 15, 7, 1837-1842 (2003) · Zbl 1186.76194
[33] Israelachvili, J. N., Intermolecular and Surface Forces (1992), Academic Press: Academic Press New York
[34] Watson, S. J.; Otto, F.; Rubinstein, B. Y.; Davis, S. H., Coarsening dynamics of the convective Cahn-Hilliard equation, Physica D, 178, 3-4, 127-148 (2003) · Zbl 1011.76021
[35] Hellen, E. K.O.; Krug, J., Coarsening of sand ripples in mass transfer models, Phys. Rev. E, 66 (2002), 011304-9
[36] Thiele, U., Open questions and promising new fields in dewetting, Euro. Phys. J. E, 12, 3, 409-414 (2003)
[37] Michael J. Ward, Dynamic metastability and singular perturbations, in: Boundaries, Interfaces, and Transitions (Banff, AB, 1995), pp. 237-263. Amer. Math. Soc., Providence, RI, 1998.; Michael J. Ward, Dynamic metastability and singular perturbations, in: Boundaries, Interfaces, and Transitions (Banff, AB, 1995), pp. 237-263. Amer. Math. Soc., Providence, RI, 1998. · Zbl 0910.35011
[38] Witelski, T. P.; Schaeffer, D. G.; Shearer, M., A discrete model for an ill-posed nonlinear parabolic PDE, Physica D, 160, 3-4, 189-221 (2001) · Zbl 0989.65111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.