×

Vaccination policies and nonlinear force of infection: generalization of an observation by Alexander and Moghadas (2004). (English) Zbl 1073.92050

Summary: It has been recently showed by M. E. Alexander and S. M. Moghadas [Math. Biosci. 189, 75–96 (2004; Zbl 1073.92040)] that one of the possible causes of unexpected failures of some vaccination campaigns may be the nonlinearity of the force of infection. The aim of this paper is to give a simple and biologically meaningful sufficient condition for the globally stable eradication of diseases whose spreading is described via a generic class of SIR and SEIR epidemic models ruled by nonlinear force of infection. We consider a scenario in which there are both traditional and pulse vaccination strategies.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology

Citations:

Zbl 1073.92040
Full Text: DOI

References:

[1] Capasso, V.; Grosso, E.; Serio, G., I modelli matematici nella indagine epidemiologica. Applicazione all’epidemia di colera verificatasi in Bari nel 1973, Annali Sclavo, 19, 193-208 (1977), (in Italian)
[2] Capasso, V.; Serio, G., A generalization of the Kermak-Mc Kendrik deterministic epidemic model, Math Biosci., 42, 41-61 (1978) · Zbl 0398.92026
[3] Capasso, V., Global solution for a diffusive nonlinear deterministic epidemic model, SIAM J. Appl. Anal., 35, 274-284 (1978) · Zbl 0415.92018
[4] Capasso, V., Mathematical Structure of Epidemic Models (1993), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0798.92024
[5] Ruan, S.; Wang, W., Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equat., 188, 153-163 (2003) · Zbl 1028.34046
[6] Poland, G. A.; Jacobson, R. M., Failure to reach the goal of measles elimination, Arch. Int. Med., 154, 1815-1820 (1994)
[7] Alexander, M. E.; Moghadas, S. M., Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci., 189, 75-96 (2004) · Zbl 1073.92040
[8] Agur, Z.; Cojocaru, L.; Mazor, G.; Anderson, R. M.; Danon, Y. L., Pulse mass Measles vaccination across age cohorts, Proc. Nat. Acad. Sci. USA, 90, 11698-11702 (1993)
[9] Shulgin, B.; Stone, L.; Agur, Z., Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol., 60, 1123-1148 (1998) · Zbl 0941.92026
[10] Shulgin, B.; Stone, L.; Agur, Z., Theoretical examination of pulse vaccination policy in the SIR epidemic model, Math. Comput. Modell., 31, 4/5, 207-215 (2000) · Zbl 1043.92527
[11] d’Onofrio, A., Stability property of pulse vaccination technique in SEIR epidemic model, Math. Biosci., 179/1, 57-72 (2002) · Zbl 0991.92025
[12] d’Onofrio, A., Pulse vaccination strategy in SIR epidemic model: global stability, vaccine failures and double vaccinations, Math. Comput. Modell., 36, 4-5, 461-478 (2002)
[13] Lu, Z.; Chi, X.; Chen, L., The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission, Math. Comput. Modell., 36, 1039-1057 (2002) · Zbl 1023.92026
[14] A. d’Onofrio, On pulse vaccination strategy in SIR epidemic model with vertical transmission, Appl. Math. Lett., in press.; A. d’Onofrio, On pulse vaccination strategy in SIR epidemic model with vertical transmission, Appl. Math. Lett., in press.
[15] d’Onofrio, A., Mixed pulse vaccination strategy in epidemic models having realistic distributions of infectious and latent periods, Appl. Math. Comput., 151, 181-187 (2004) · Zbl 1043.92033
[16] K. Marron, H. Shai, Z. Agur, Preparing for a smallpox attack: pulse vaccination as an optimal strategy, in: Abstract Book of CMPD Conference, Trento, 21-25 June 2004, p. 91.; K. Marron, H. Shai, Z. Agur, Preparing for a smallpox attack: pulse vaccination as an optimal strategy, in: Abstract Book of CMPD Conference, Trento, 21-25 June 2004, p. 91.
[17] van den Driessche, P.; Watmough, J., A simple SIS epidemic model with a backward bifurcation, J. Math. Biol., 40, 525-540 (2000) · Zbl 0961.92029
[18] Cooke, K. L.; Yorke, J. A., Some equations modelling growth processes and Gonorrhea epidemics, Math. Biosci., 16, 75101 (1973) · Zbl 0251.92011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.