×

Random partitions approximating the coalescence of lineages during a selective sweep. (English) Zbl 1073.92029

Summary: When a beneficial mutation occurs in a population, the new, favored allele may spread to the entire population. This process is known as a selective sweep. Suppose we sample \(n\) individuals at the end of a selective sweep. If we focus on a site on the chromosome that is close to the location of the beneficial mutation, then many of the lineages will likely be descended from the individual that had the beneficial mutation, while others will be descended from a different individual because of recombination between the two sites.
We introduce two approximations for the effect of a selective sweep. The first one is simple but not very accurate: flip \(n\) independent coins with probability \(p\) of heads and say that the lineages whose coinss come up heads are those that are descended from the individual with the beneficial mutation. A second approximation, which is related to J. F. C. Kingman’s paintbox construction [J. Lond. Math. Soc., II Ser. 18, 374–380 (1978; Zbl 0415.92009)], replaces the coin flips by integer-valued random variables and leads to very accurate results.

MSC:

92D10 Genetics and epigenetics
60J85 Applications of branching processes
05A18 Partitions of sets
92D15 Problems related to evolution

Citations:

Zbl 0415.92009

References:

[1] Athreya, K. B. and Ney, P. E. (1972). Branching Processes . Springer, New York. · Zbl 0259.60002
[2] Barton, N. H. (1998). The effect of hitch-hiking on neutral genealogies. Genetic Research Cambridge 72 123–133.
[3] Barton, N. H., Etheridge, A. M. and Sturm, A. K. (2004). Coalescence in a random background. Ann. Appl. Probab. 14 754–785. · Zbl 1060.60100 · doi:10.1214/105051604000000099
[4] Donnelly, P. and Kurtz, T. G. (1999). Genealogical processes for Fleming–Viot models with selection and recombination. Ann. Appl. Probab. 9 1091–1148. · Zbl 0964.60075 · doi:10.1214/aoap/1029962866
[5] Durrett, R. (1996). Probability : Theory and Examples , 2nd ed. Duxbury, Belmont, CA. · Zbl 1202.60001
[6] Durrett, R. (2002). Probability Models for DNA Sequence Evolution . Springer, New York. · Zbl 0991.92021
[7] Durrett, R. and Schweinsberg, J. (2004). Approximating selective sweeps. Theoret. Population Biol. 66 129–138. · Zbl 1111.92042 · doi:10.1016/j.tpb.2004.04.002
[8] Durrett, R. and Schweinsberg, J. (2004). A coalescent model for the effect of advantageous mutations on the genealogy of a population. Preprint. Available at http://front.math. ucdavis.edu/ math.PR/0411071. · Zbl 1082.92031 · doi:10.1016/j.spa.2005.04.009
[9] Etheridge, A. M., Pfaffelhuber, P. and Wakolbinger, A. (2005). An approximate sampling formula under genetic hitchhiking. Preprint. Available at http://front.math. ucdavis.edu/math.PR/0503485. · Zbl 1115.92044 · doi:10.1214/105051606000000114
[10] Gadag, V. G. and Rajarshi, M. B. (1987). On multitype processes based on progeny length particles of a supercritical Galton–Watson process. J. Appl. Probab. 24 14–24. · Zbl 0616.60080 · doi:10.2307/3214055
[11] Gadag, V. G. and Rajarshi, M. B. (1992). On processes associated with a super-critical Markov branching process. Serdica 18 173–178. · Zbl 0806.60070
[12] Gillespie, J. H. (2000). Genetic drift in an infinite population: The pseudohitchhiking model. Genetics 155 909–919.
[13] Johnson, N. L., Kotz, S. and Kemp, A. W. (1992). Univariate Discrete Distributions , 2nd ed. Wiley, New York. · Zbl 0773.62007
[14] Joyce, P. and Tavaré, S. (1987). Cycles, permutations and the structure of the Yule process with immigration. Stochastic Process. Appl. 25 309–314. · Zbl 0625.92011 · doi:10.1016/0304-4149(87)90209-2
[15] Kaplan, N. L., Hudson, R. R. and Langley, C. H. (1989). The “hitchhiking effect” revisited. Genetics 123 887–899.
[16] Kingman, J. F. C. (1978). The representation of partition structures. J. London Math. Soc. 18 374–380. · Zbl 0415.92009 · doi:10.1112/jlms/s2-18.2.374
[17] Kingman, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13 235–248. · Zbl 0491.60076 · doi:10.1016/0304-4149(82)90011-4
[18] Maynard Smith, J. and Haigh, J. (1974). The hitch-hiking effect of a favorable gene. Genetic Research 23 23–35.
[19] Moran, P. A. P. (1958). Random processes in genetics. Proceedings of the Cambridge Philosophical Society 54 60–71. · Zbl 0091.15701 · doi:10.1017/S0305004100033193
[20] Möhle, M. and Sagitov, S. (2001). A classification of coalescent processes for haploid exchangeable population models. Ann. Probab. 29 1547–1562. · Zbl 1013.92029 · doi:10.1214/aop/1015345761
[21] O’Connell, N. (1993). Yule process approximation for the skeleton of a branching process. J. Appl. Probab. 30 725–729. · Zbl 0783.60080 · doi:10.2307/3214778
[22] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27 1870–1902. · Zbl 0963.60079 · doi:10.1214/aop/1022677552
[23] Przeworski, M. (2002). The signature of positive selection at randomly chosen loci. Genetics 160 1179–1189.
[24] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 1116–1125. · Zbl 0962.92026 · doi:10.1239/jap/1032374759
[25] Schweinsberg, J. (2000). Coalescents with simultaneous multiple collisions. Electron. J. Probab. 5 1–50. · Zbl 0959.60065
[26] Simonsen, K. L., Churchill, G. A. and Aquadro, C. F. (1995). Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141 413–429.
[27] Stephan, W., Wiehe, T. and Lenz, M. W. (1992). The effect of strongly selected substitutions on neutral polymorphism: Analytical results based on diffusion theory. Theoret. Population Biol. 41 237–254. · Zbl 0738.92013 · doi:10.1016/0040-5809(92)90045-U
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.