×

Spaces of \(N\)-homogeneous polynomials between Fréchet spaces. (English) Zbl 1073.46038

The author studies properties of the Nachbin ported topology \(\tau_{\omega}\) on the space \({\mathcal P}(^NE,F)\) of \(N\)-homogeneous polynomials between Fréchet spaces \(E\) and \(F\). To achieve this, the canonical linear topological isomorphism \(({\mathcal P}(^NE,F),\tau_\omega) \cong L_\omega(\bigotimes _{N,s,\pi}E,F)\) is used. Here, the topological space \(L_\omega(G,F)\) is defined as \(L_\omega(G,F)=\text{proj}_n \text{ind}_m L_b(G_m,F_n)\), where \((G_m)\) and \((F_n)\) denote the canonical spectra of \(G\) and \(F\), respectively. This linearization allows to study the barrelledness of \(({\mathcal P}(^NE,F),\tau_\omega)\) in terms of \(\text{Ext}^1(\widehat{\bigotimes}_{N,\pi}E,F)=0\). Using certain permanence properties of Vogt’s \((DN)\) and \((\overline{\overline{\Omega}})\) properties for LB-spaces, some necessary and sufficient criteria for the barrelledness of \({\mathcal P}(^NE,F),\tau_\omega)\) are given.

MSC:

46G25 (Spaces of) multilinear mappings, polynomials
46E50 Spaces of differentiable or holomorphic functions on infinite-dimensional spaces
46G20 Infinite-dimensional holomorphy
46A63 Topological invariants ((DN), (\(\Omega\)), etc.) for locally convex spaces
Full Text: DOI

References:

[1] Bierstedt, K. D.; Bonet, J., Dual density condition in (DF)-spaces I, Results Math., 14, 242-274 (1988) · Zbl 0688.46002
[2] Defant, A.; Floret, K., Tensor Norms and Operator Ideals (1993), North-Holland: North-Holland Amsterdam · Zbl 0774.46018
[3] Defant, A.; Govaerts, W., Tensor products and spaces of vector-valued continuous functions, Manuscripta Math., 55, 433-449 (1986) · Zbl 0601.46064
[4] Dı́az, J. C.; Dineen, S., Polynomials on stable spaces, Ark. Mat., 36, 1, 87-96 (1998) · Zbl 0929.46036
[5] Dineen, S., Complex Analysis in Locally Convex Spaces, Springer Monogr. Math. (1999), Springer-Verlag: Springer-Verlag London · Zbl 1034.46504
[6] Frerick, L.; Wengenroth, J., A sufficient condition for vanishing of the derived projective limit functor, Arch. Math., 67, 4, 296-301 (1996) · Zbl 0859.46046
[7] Jarchow, H., Locally Convex Spaces (1981), Teubner: Teubner Stuttgart · Zbl 0466.46001
[8] Horvath, J., Topological Vector Spaces and Distributions, vol. I (1966), Addison-Wesley · Zbl 0143.15101
[9] Köthe, G., Topological Vector Spaces I, II (1969), Springer-Verlag, 1979 · Zbl 0179.17001
[10] Krone, J.; Vogt, D., The splitting relation for Köthe spaces, Math. Z., 190, 387-400 (1985) · Zbl 0586.46005
[11] Mangino, E. M., (DN)-type properties and projective tensor products, Results Math., 36, 110-120 (1999) · Zbl 0935.46002
[12] Meise, R.; Vogt, D., Einführung in die Funktionalanalysis, Vieweg Stud. Aufbaukurs Math., vol. 62 (1992) · Zbl 0781.46001
[13] Peris, A., Quasinormable spaces and the problem of topologies of Grothendieck, Ann. Acad. Sci. Fenn. Ser. A I, 19, 267-303 (1994)
[14] Vogt, D., Subspaces and quotients of \((s)\), (Bierstedt, K. D.; Fuchssteiner, B., Functional Analysis: Survey and Recent Results. Functional Analysis: Survey and Recent Results, North-Holland Math. Stud., vol. 27 (1977)), 167-187
[15] Vogt, D., Frécheträume zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math., 345, 182-200 (1983) · Zbl 0514.46003
[16] Vogt, D., Some results on continuous linear maps between Fréchet spaces, (Bierstedt, K. D.; Fuchssteiner, B., Functional Analysis: Survey and Recent Results III. Functional Analysis: Survey and Recent Results III, North-Holland Math. Stud., vol. 90 (1984)), 349-381 · Zbl 0585.46060
[17] Vogt, D., Lectures on projective spectra of (LB)-spaces, Seminar Lectures (1987), AG Funktionalanalysis: AG Funktionalanalysis Düsseldorf/Wuppertal
[18] Vogt, D., On the functor \(Ext^1(E,F)\) for Fréchet spaces, Studia Math., 85, 163-197 (1987) · Zbl 0651.46001
[19] Wengenroth, J., Derived Functors in Functional Analysis, Lecture Notes in Math., vol. 1810 (2003), Springer-Verlag: Springer-Verlag Berlin · Zbl 1031.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.