×

Evaluation of the largest Lyapunov exponent in dynamical systems with time delay. (English) Zbl 1071.37014

Summary: A method of estimation of the largest Lyapunov exponents for dynamical systems with time delay is developed. This method can be applied both for flows and discrete maps. Our approach is based on the phenomenon of synchronization of identical systems coupled by linear negative feedback mechanism (flows) and exponential perturbation (maps). The existence of linear dependence of the largest Lyapunov exponent on the coupled parameter allows a precise estimation on this exponent.

MSC:

37C10 Dynamics induced by flows and semiflows
34K20 Stability theory of functional-differential equations
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93D15 Stabilization of systems by feedback

Software:

Dynamics
Full Text: DOI

References:

[1] Awrejcewicz, J.; Wojewoda, J., Observation of chaos in a nonlinear oscillator with delay: numerical study, KSME J., 3, 1, 15-24 (1989)
[2] Benettin, G.; Galgani, L.; Strelcyn, J. M., Kolmogorov entropy and numerical experiment, Phys. Rev. A, 14, 2338-2345 (1976)
[3] Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J. M., Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, part I: theory, Meccanica, 15, 9-20 (1980) · Zbl 0488.70015
[4] Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J. M., Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, part II: numerical application, Meccanica, 15, 21-30 (1980)
[5] Eckmann, J. P.; Kamphorst, S. O.; Ruelle, D.; Ciliberto, S., Lyapunov exponents from a time series, Phys. Rev. Lett., 34, 9, 4971-4979 (1986)
[6] Fujisaka, H.; Yamada, T., Stability theory of synchronized motion in coupled-oscillator systems, Prog. Theor. Phys., 69, 1, 32-47 (1983) · Zbl 1171.70306
[7] Henon, M., A two dimensional map with a strange attractor, Commun. Math. Phys., 50, 69 (1976) · Zbl 0576.58018
[8] Henon, M.; Heiles, C., The applicability of the third integral of the motion: some numerical results, Astron. J., 69, 77 (1964)
[9] Hinrichs, N.; Oestreich, M.; Popp, K., Dynamics of oscillators with impact and friction, Chaos, Solitons & Fractals, 4, 8, 535-558 (1997) · Zbl 0963.70552
[10] Kapitaniak, T.; Sekieta, M.; Ogorzalek, Monotone synchronization of chaos, Bifurcat. Chaos, 6, 211-215 (1996) · Zbl 0870.94003
[11] Müller, P., Calculation of Lyapunov exponents for dynamical systems with discontinuities, Chaos, Solitons & Fractals, 5, 9, 1671-1681 (1995) · Zbl 1080.34540
[12] Nusse, H. E.; Yorke, J. A., Dynamics: numerical explorations (1997), Springer-Verlag: Springer-Verlag New York
[13] Oseledec, V. I., A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19, 197-231 (1968) · Zbl 0236.93034
[14] Parlitz, U., Identification of true and spurious Lyapunov exponents from time series, J. Bifurcat. Chaos, 2, 1, 155-165 (1992) · Zbl 0878.34047
[15] Pecora, L. M.; Carroll, T. L., Synchronization of chaos, Phys. Rev. Lett., 64, 221-224 (1990)
[16] Plauth, R. H.; Hsieh, J.-C., Chaos in a mechanism with time delays under parametric and external excitation, J. Sound Vibrat., 114, 1, 73-90 (1987) · Zbl 1235.70098
[17] Rosenstein, M. T.; Collins, J. J.; De Luca, C. J., A practical method for calculating largest Lyapunov exponents from small data sets, Physica D, 65, 1,2, 117-134 (1993) · Zbl 0779.58030
[18] Sano, M.; Sawada, Y., Measurement of the Lyapunov spectrum from a chaotic time series, Phys. Rev. Lett., 55, 1082-1085 (1985)
[19] Shimada, I.; Nagashima, T., A numerical approach to ergodic problem of dissipative dynamical systems, Prog. Theor. Phys., 61, 6, 1605-1616 (1979) · Zbl 1171.34327
[20] Stefanski, A.; Kapitaniak, T., Using chaos synchronization to estimate the largest Lyapunov exponent of non-smooth systems, Discrete Dyn. Nat. Soc., 4, 207-215 (2000) · Zbl 0984.37031
[21] Stefanski, A., Estimation of the largest Lyapunov exponent in systems with impacts, Chaos, Solitons & Fractals, 11, 15, 2443-2451 (2000) · Zbl 0963.70018
[22] Stefanski, A.; Kapitaniak, T., Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization, Chaos, Solitons & Fractals, 15, 233-244 (2003) · Zbl 1038.37027
[23] Takens, F., Detecting strange attractors in turbulence, Lect. Notes Math., 898, 366 (1981) · Zbl 0513.58032
[24] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D, 16, 285-317 (1985) · Zbl 0585.58037
[25] Wolf, A., Quantifying chaos with Lyapunov exponents, (Holden, V., Chaos (1986), Manchester University Press: Manchester University Press Manchester), 273-290
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.