×

Symmetry classification of KdV-type nonlinear evolution equations. (English) Zbl 1071.35112

Summary: Group classification of a class of third-order nonlinear evolution equations generalizing KdV and mKdV equations is performed. It is shown that there are two equations admitting simple Lie algebras of dimension three. Next, we prove that there exist only four equations invariant with respect to Lie algebras having nontrivial Levi factors of dimension four and six. Our analysis shows that there are no equations invariant under algebras which are semi-direct sums of Levi factor and radical. Making use of these results we prove that there are three, nine, thirty-eight, fifty-two inequivalent KdV-type nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively. Finally, we perform a complete group classification of the most general linear third-order evolution equation.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35A30 Geometric theory, characteristics, transformations in context of PDEs
37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] DOI: 10.1063/1.529807 · Zbl 0767.35077 · doi:10.1063/1.529807
[2] Güngör F., Can. J. Phys. 74 pp 676– (1996) · doi:10.1139/p96-097
[3] Abellanas L., J. Phys. A 26 pp L1229– (1993) · Zbl 0821.35118 · doi:10.1088/0305-4470/26/23/007
[4] Zhdanov R., J. Phys. A 32 pp 7405– (1999) · Zbl 0990.35009 · doi:10.1088/0305-4470/32/42/312
[5] Basarab-Horwath P., Acta Appl. Math. 69 pp 43– (2001) · Zbl 1054.35002 · doi:10.1023/A:1012667617936
[6] Mubarakzyanov G. M., Izv. Vyssh. Uchebn. Zaved., Mat. 32 pp 114– (1963)
[7] Mubarakzyanov G. M., Izv. Vyssh. Uchebn. Zaved., Mat. 34 pp 99– (1963)
[8] Mubarakzyanov G. M., Izv. Vyssh. Uchebn. Zaved., Mat. 55 pp 95– (1966)
[9] DOI: 10.1063/1.522992 · Zbl 0357.17004 · doi:10.1063/1.522992
[10] Gagnon L., J. Phys. A 26 pp 7061– (1993) · Zbl 0821.35128 · doi:10.1088/0305-4470/26/23/043
[11] Güngör F., J. Math. Anal. Appl. 276 pp 314– (2002) · Zbl 1012.35074 · doi:10.1016/S0022-247X(02)00445-6
[12] DOI: 10.1063/1.531722 · Zbl 0862.34049 · doi:10.1063/1.531722
[13] Gomez-Ullate D., J. Math. Phys. 40 pp 2782– (1999) · Zbl 0977.37035 · doi:10.1063/1.532728
[14] Lafortune S., J. Math. Phys. 42 pp 5341– (2001) · Zbl 1018.81056 · doi:10.1063/1.1398583
[15] Zhdanov R., Physica D 95 pp 158– (1996) · Zbl 0888.35069 · doi:10.1016/0167-2789(96)00047-4
[16] Zhdanov R., Rep. Math. Phys. 45 pp 273– (2000) · Zbl 0970.81024 · doi:10.1016/S0034-4877(00)89037-0
[17] DOI: 10.1063/1.528140 · Zbl 0664.17004 · doi:10.1063/1.528140
[18] Calogero F., J. Math. Phys. 28 pp 538– (1987) · Zbl 0663.35006 · doi:10.1063/1.527639
[19] Sokolov V. V., Sov. Sci. Rev., Sect. C, Math. Phys. Rev. 4 pp 221– (1984)
[20] DOI: 10.1063/1.524581 · Zbl 0455.35109 · doi:10.1063/1.524581
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.