×

Reductive embeddings are Cohen-Macaulay. (English) Zbl 1071.14518

Summary: We prove that in positive characteristic normal embeddings of connected reductive groups are Frobenius split. As a consequence, they have rational singularities and are thus Cohen-Macaulay varieties.
As an application, we study the particular case of reductive monoids, which are affine embeddings of their unit group. In particular, we show that the algebra of regular functions of a normal irreducible reductive monoid \(M\) has a good filtration for the action of the unit group of \(M\).

MSC:

14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
14L30 Group actions on varieties or schemes (quotients)
14M17 Homogeneous spaces and generalizations
20M99 Semigroups
Full Text: DOI

References:

[1] M. Brion and S. P. Inamdar, Frobenius splitting of spherical varieties, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 207 – 218. · Zbl 0820.14032
[2] Michel Brion and Patrick Polo, Large Schubert varieties, Represent. Theory 4 (2000), 97 – 126. · Zbl 0947.14026
[3] Stephen Doty, Representation theory of reductive normal algebraic monoids, Trans. Amer. Math. Soc. 351 (1999), no. 6, 2539 – 2551. · Zbl 0920.20054
[4] C. De Concini and C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1 – 44. · Zbl 0581.14041 · doi:10.1007/BFb0063234
[5] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. · Zbl 0813.14039
[6] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. · Zbl 0367.14001
[7] Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. · Zbl 0654.20039
[8] Friedrich Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) Manoj Prakashan, Madras, 1991, pp. 225 – 249. · Zbl 0812.20023
[9] Niels Lauritzen, Splitting properties of complete homogeneous spaces, J. Algebra 162 (1993), no. 1, 178 – 193. · Zbl 0802.14021 · doi:10.1006/jabr.1993.1248
[10] Olivier Mathieu, Tilting modules and their applications, Analysis on homogeneous spaces and representation theory of Lie groups, Okayama – Kyoto (1997), Adv. Stud. Pure Math., vol. 26, Math. Soc. Japan, Tokyo, 2000, pp. 145 – 212. · Zbl 0987.20022
[11] V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), no. 1, 27 – 40. · Zbl 0601.14043 · doi:10.2307/1971368
[12] A. Ramanathan, Equations defining Schubert varieties and Frobenius splitting of diagonals, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 61 – 90. · Zbl 0634.14035
[13] Lex E. Renner, Cohen-Macaulay algebraic monoids, Proc. Amer. Math. Soc. 89 (1983), no. 4, 574 – 578. · Zbl 0556.14024
[14] A. Rittatore, Algebraic monoids and group embeddings, Transform. Groups 3 (1998), no. 4, 375 – 396. · Zbl 0946.14028 · doi:10.1007/BF01234534
[15] Elisabetta Strickland, A vanishing theorem for group compactifications, Math. Ann. 277 (1987), no. 1, 165 – 171. · Zbl 0595.14037 · doi:10.1007/BF01457285
[16] Wilberd van der Kallen, Lectures on Frobenius splittings and \?-modules, Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1993. Notes by S. P. Inamdar. · Zbl 0815.20027
[17] E. B. Vinberg, On reductive algebraic semigroups, Lie groups and Lie algebras: E. B. Dynkin’s Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 169, Amer. Math. Soc., Providence, RI, 1995, pp. 145 – 182. · Zbl 0840.20041 · doi:10.1090/trans2/169/10
[18] Thierry Vust, Plongements d’espaces symétriques algébriques: une classification, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 2, 165 – 195 (French). · Zbl 0728.14041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.