×

Soliton solutions on noncommutative orbifold \(T^ 2/Z_ 4\). (English) Zbl 1070.81104

Summary: In this paper, we explicitly construct a series of projectors on integrable noncommutative orbifold \(T^2/Z_4\) by extended \(GHS\) construction. They include integration of two arbitary functions with \(Z_4\) symmetry. Our expression possesses manifest \(Z_4\) symmetry. It is proven that the expression includes all projectors with minimal trace and in their standard expansions, the eigenvalue functions of coefficient operators are continuous with respect to the arguments \(k\) and \(q\). Based on the integral expression, we alternately show the derivative expression in terms of the similar kernel to the integral one. Since projectors correspond to soliton solutions of the field theory on the noncommutative orbifold, we thus present a series of corresponding solitons.

MSC:

81T75 Noncommutative geometry methods in quantum field theory
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] G. Landi, ”An introduction to noncommutative space and their geometry,” hep-th/9701078;
[2] J. Varilly, ”An introduction to noncommutative geometry,” physics/9709045.
[3] Connes A., J. High Energy Phys. 9802 pp 003– (1998) · doi:10.1088/1126-6708/1998/02/003
[4] Dougals M., J. High Energy Phys. 9802 pp 008– (1998) · doi:10.1088/1126-6708/1998/02/003
[5] DOI: 10.1088/1126-6708/1999/09/032 · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[6] DOI: 10.1088/1126-6708/1999/09/032 · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[7] DOI: 10.1016/0550-3213(86)90155-0 · doi:10.1016/0550-3213(86)90155-0
[8] DOI: 10.1088/1126-6708/2001/05/041 · doi:10.1088/1126-6708/2001/05/041
[9] DOI: 10.1088/1126-6708/2001/04/011 · doi:10.1088/1126-6708/2001/04/011
[10] DOI: 10.1088/1126-6708/2001/10/039 · doi:10.1088/1126-6708/2001/10/039
[11] Polychronakos A. P., J. High Energy Phys. 0106 pp 070– (2001) · doi:10.1088/1126-6708/2001/06/070
[12] Morariu B., J. High Energy Phys. 0107 pp 006– (2001) · doi:10.1088/1126-6708/2001/07/006
[13] L. Susskind, ”The quantum Hall fluid and noncommutative Chern–Simons theory,” hep-th/0101029.
[14] DOI: 10.1088/1126-6708/2002/05/037 · doi:10.1088/1126-6708/2002/05/037
[15] J. Hu and S. C. Zhang, ”Collective excitations at the boundary of a 4D quantum Hall droplet,” cond-mat/0112432.
[16] DOI: 10.1016/S0550-3213(02)00634-X · Zbl 0998.81125 · doi:10.1016/S0550-3213(02)00634-X
[17] Chen Y. X., Nucl. Phys. B 638 pp 220– (2002) · Zbl 0997.81136 · doi:10.1016/S0550-3213(02)00499-6
[18] B. Freivogel, L. Susskind, and N. Toumbas, ”A two fluid description of the quantum Hall soliton,” hep-th/0108076.
[19] S. Hellerman and L. Susskind, ”Realizing the quantum Hall system in string theory,” hep-th/0107200.
[20] Matusis A., J. High Energy Phys. 0012 pp 002– (2000) · Zbl 0990.81549 · doi:10.1088/1126-6708/2000/12/002
[21] DOI: 10.1088/1126-6708/2000/02/020 · Zbl 0959.81108 · doi:10.1088/1126-6708/2000/02/020
[22] DOI: 10.1088/1126-6708/2001/02/003 · doi:10.1088/1126-6708/2001/02/003
[23] Gopakumar R., J. High Energy Phys. 005 pp 048– (2000)
[24] Polychronakos A. P., Phys. Lett. B 495 pp 407– (2000) · Zbl 0976.81125 · doi:10.1016/S0370-2693(00)01270-3
[25] R. Gopakumar, M. Headrick, and M. Spradin, ”On noncommutative multisolitons,” hep-th/0103256.
[26] J. Harvey, ”Komaba lectures on noncommutative solitons and D-branes,” hep-th/0102076; · Zbl 0990.81547 · doi:10.1088/1126-6708/2000/12/024
[27] Harvey J. A., J. High Energy Phys. 0012 pp 024– (2000) · Zbl 0990.81547 · doi:10.1088/1126-6708/2000/12/024
[28] Hamanaka M., J. High Energy Phys. 0103 pp 034– (2001) · Zbl 0990.81547 · doi:10.1088/1126-6708/2000/12/024
[29] D. J. Gross and N. A. Nekrasov, ”Solitons in noncommutative gauge theory,” hep-th/0010090;
[30] M. R. Douglas and N. A. Nekrasov, ”Noncommutative field theory,” hep-th/0106048. · Zbl 1205.81126
[31] E. J. Martinec and G. Moore, ”Noncommutative solitons on orbifolds,” hep-th/0101199.
[32] B. Y. Hou, D. T. Peng, K. J. Shi, and R. H. Yue, ”Solitons on noncommutative torus as elliptic calogero gaudin models, branes, and laughlin wave function,” hep-th/0204163. · Zbl 1026.81051
[33] Hou B. Y., Int. J. Mod. Phys. B 16 pp 2079– (2002) · Zbl 1073.81617 · doi:10.1142/S0217979202011822
[34] Hou B. Y., Lett. Math. Phys. 61 pp 205– (2002) · Zbl 1034.81048 · doi:10.1023/A:1021294221710
[35] Derrick G., J. Math. Phys. 5 pp 1252– (1965) · doi:10.1063/1.1704233
[36] Sen A., J. High Energy Phys. 08 pp 012– (1998) · Zbl 0955.81038 · doi:10.1088/1126-6708/1998/08/012
[37] Sen A., J. High Energy Phys. 0003 pp 0002– (2000) · Zbl 0959.81047 · doi:10.1088/1126-6708/2000/03/002
[38] DOI: 10.2140/pjm.1981.93.415 · Zbl 0499.46039 · doi:10.2140/pjm.1981.93.415
[39] Boca F. P., Commun. Math. Phys. 202 pp 325– (1999) · Zbl 0956.46048 · doi:10.1007/s002200050585
[40] Bacry H., Phys. Rev. B 12 pp 1112– (1975) · doi:10.1103/PhysRevB.12.1118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.