×

Singular value decomposition in additive, multiplicative, and logistic forms. (English) Zbl 1069.68591

Summary: Singular Value Decomposition (SVD) is widely used in data processing, reduction, and visualization. Applied to a positive matrix, the regular additive SVD by the first several dual vectors can yield irrelevant negative elements of the approximated matrix. We consider a multiplicative SVD modification that corresponds to minimizing the relative errors and produces always positive matrices at any approximation step. Another logistic SVD modification can be used for decomposition of the matrices of proportions, when a regular SVD can yield the elements beyond the zero-one range, while the modified SVD decomposition produces all the elements within the correct range at any step of approximation. Several additional modifications of matrix approximation are also considered.

MSC:

68T10 Pattern recognition, speech recognition
68P05 Data structures

Software:

bmds
Full Text: DOI

References:

[1] Eckart, C.; Young, G., The approximation of one matrix by another of lower rank, Psycometrika, 1, 211-218 (1936) · JFM 62.1075.02
[2] Golub, G. H.; Van Loan, C. F., Matrix Computations (1983), Johns Hopkins University Press: Johns Hopkins University Press Baltimore · Zbl 0559.65011
[3] Seber, G. A.F., Multivariate Observations (1984), Wiley: Wiley New York · Zbl 0627.62052
[4] Thisted, R. A., Elements of Statistical ComputingNumerical Computation (1988), Chapman & Hall: Chapman & Hall New York · Zbl 0663.62001
[5] Kalman, D., A singular value decompositionthe SVD of a matrix, Coll. Math. J., 27, 2-23 (1996)
[6] Andrews, H. C.; Patterson, C. L., Outer product expansions and their uses in digital image processing, Am. Math. Mon., 82, 1-13 (1975) · Zbl 0299.68063
[7] Klema, V. C., The singular value decomposition: its computation and some applications, IEEE Trans. Automat. Control, 25, 164-176 (1980) · Zbl 0433.93018
[8] Fukunaga, K., Introduction to Statistical Pattern Recognition (1990), Academic Press: Academic Press London · Zbl 0711.62052
[9] Bishop, C. M., Neural Networks for Pattern Recognition (1995), Oxford University Press: Oxford University Press Oxford
[10] Ripley, B. D., Pattern Recognition and Neural Networks (1996), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0853.62046
[11] Duda, R.; Hart, P.; Stork, D., Pattern Classification (2000), Wiley: Wiley New York
[12] Tian, Y.; Tan, T.; Wang, Y.; Fang, Y., Do singular values contain adequate information for face recognition, Pattern Recognition, 36, 649-655 (2003)
[13] Gollob, H. F., A statistical model which combines features of factor analysis and analysis of variance techniques, Psychometrika, 33, 73-116 (1968) · Zbl 0167.48601
[14] Schiffman, S. S.; Reynolds, M. L.; Young, F. W., Introduction to Multidimensional Scaling (1981), Academic Press: Academic Press New York · Zbl 0539.65027
[15] Chambers, J. M.; Cleveland, W. S.; Kleiner, B.; Tukey, P. A., Graphical Methods for Data Analysis (1983), Wadsworth: Wadsworth Belmont, California · Zbl 0532.65094
[16] Oh, M. S.; Raftery, A. E., Bayesian multidimensional scaling and choice of dimension, J. Am. Statist. Assoc., 96, 1031-1044 (2001) · Zbl 1072.62543
[17] Drineas, P.; Frieze, A.; Kannan, R.; Vempala, S.; Vinay, V., Clustering large graphs via the singular value decomposition, Mach. Learn., 56, 9-33 (2004) · Zbl 1089.68090
[18] Gabriel, K. R., The biplot graphical display of matrices with applications to principal component analysis, Biometrika, 58, 453-467 (1971) · Zbl 0228.62034
[19] Gabriel, K. R.; Odoroff, C. L., Biplots in biomedical research, Statist. Med., 9, 469-485 (1990)
[20] Nishisato, S., Analysis of Categorical DataDual Scaling and its Applications (1980), Toronto University Press: Toronto University Press Toronto · Zbl 0487.62001
[21] de Leeuw, J.; van Rijckevorsel, J., Homals and principals: some generalization of principal component analysis, (Diday, E.; etal., Data analysis and informatics, vol. II (1980), Amsterdam: Amsterdam North Holland), 231-242
[22] Lebart, L.; Morineau, A.; Warwick, K. M., Multivariate descriptive statistical analysisCorrespondence Analysis and Related Techniques for Large Matrices (1984), Wiley: Wiley New York · Zbl 0658.62069
[23] Greenacre, M. J., Theory and Application of Correspondence Analysis (1984), Academic Press: Academic Press London · Zbl 0726.62087
[24] Greenacre, M. J.; Hastie, T., The geometric interpretation of correspondence analysis, J. Am. Statist. Assoc., 82, 437-447 (1987) · Zbl 0622.62006
[25] Benzecri, J. P., Correspondence Analysis Handbook (1992), Marcel Dekker: Marcel Dekker New York · Zbl 0766.62034
[26] Krzanowski, W. J., Recent Advances in Descriptive Multivariate Analysis (1995), Clarendon Press: Clarendon Press Oxford · Zbl 0875.62265
[27] Lynn, H. S.; McCulloch, C. E., Using principal component analysis and correspondence analysis for estimation in latent variable models, J. Am. Statist. Assoc., 95, 561-572 (2000) · Zbl 0996.62060
[28] Carroll, J. D.; Green, P. E.; Schaffer, C. M., Interpoint distance comparisons in correspondence analysis, J. Marketing Res., 23, 271-280 (1986)
[29] Shugan, S. M., Estimating brand positioning maps using supermarket scanning data, J. Marketing Res., 24, 1-18 (1987)
[30] Kaciak, E.; Louviere, J., Multiple correspondence analysis of multiple choice experiment data, J Marketing Res., 27, 455-465 (1990)
[31] Steenkamp, J. B.; van Trijp, H.; Ten Berge, J., Perceptual mapping based on idiosyncratic sets, J. Marketing Res., 31, 15-27 (1994)
[32] Carlier, A.; Kroonenberg, P. M., Decompositions and biplots in three-way correspondence analysis, Psychometrica, 61, 353-373 (1996) · Zbl 0876.62048
[33] Sinha, I.; DeSarbo, W. S., An integrated approach toward the spatial modeling of perceived customer value, J. Marketing Res., 35, 236-249 (1998)
[34] Moler, C.; Morrison, D., Singular value analysis of cryptograms, Am. Math. Mon., 90, 78-87 (1983) · Zbl 0506.94010
[35] Gass, S. I.; Rapcsak, T., Singular value decomposition in AHP, Eur. J. Oper. Res., 154, 573-584 (2004) · Zbl 1146.90445
[36] Lipovetsky, S.; Conklin, M., Dual priority-antipriority Thurstone scales as AHP eigenvectors, Eng. Simulat., 18, 631-648 (2001)
[37] Lipovetsky, S.; Conklin, M., Robust estimation of priorities in the AHP, Eur. J. Oper. Res., 137, 110-122 (2002) · Zbl 1009.90059
[38] S. Lipovetsky, A. Tishler, M. Conklin M., Multivariate least squares and its relation to other multivariate techniques, Appl. Stoch. Models Bus. Ind. 18 (2002) 347-356.; S. Lipovetsky, A. Tishler, M. Conklin M., Multivariate least squares and its relation to other multivariate techniques, Appl. Stoch. Models Bus. Ind. 18 (2002) 347-356. · Zbl 1039.62049
[39] Lipovetsky, S.; Conklin, M., Nonlinear Thurstone scaling via SVD and Gower plots, Int. J. Oper. Quant. Manage., 10, 3, 1-15 (2004)
[40] Lipovetsky, S.; Tishler, A., Linear methods in multimode data analysis for decision making, Comput. Oper. Res., 21, 169-183 (1994) · Zbl 0797.90052
[41] Mandel, J., A method for fitting empirical surfaces to physical or chemical data, Technometrics, 11, 411-429 (1969)
[42] Mandel, J., A new analysis of variance model for non-additive data, Technometrics, 13, 1-18 (1971) · Zbl 0216.48104
[43] Tukey, J. W., Exploratory Data Analysis (1977), Addison-Wesley: Addison-Wesley MA · Zbl 0409.62003
[44] Emerson, J. D.; Wong, G. Y., Resistant nonadditive fits for two-way tables, (Hoaglin, D. C.; Mosteller, F.; Tukey, J. W., Exploring Data Tables, Trends, and Shapes (1985), Wiley: Wiley New York), 67-124
[45] Falissard, B., Focused principal component analysislooking at a correlation matrix with a particular interest in a given variable, J. Comput. Graph. Statist., 8, 906-912 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.