×

Extreme value theory for moving average processes with light-tailed innovations. (English) Zbl 1069.62041

Summary: We consider stationary infinite moving average processes of the form \[ Y_n= \sum_{i=-\infty}^\infty c_i Z_{n+i}, \quad n\in \mathbb Z, \] where \((Z_i)_{i\in\mathbb Z}\) is a sequence of independent and identically distributed (i.i.d.) random variables with light tails and \((c_i)_{i\in\mathbb Z}\) is a sequence of positive and summable coefficients. By ‘light tails’ we mean that \(Z_0\) has a bounded density \(f(t)\sim \nu(t)\exp(-\psi(t))\), where \(\nu(t)\) behaves roughly like a constant as \(t\to\infty\) and \(\psi\) is strictly convex satisfying certain asymptotic regularity conditions. We show that the i.i.d. sequence associated with \(Y_0\) is in the maximum domain of attraction of the Gumbel distribution. Under additional regular variation conditions on \(\psi\), it is shown that the stationary sequence \((Y_n)_{n\in\mathbb N}\) has the same extremal behaviour as its associated i.i.d. sequence. This generalizes H. Rootzén’s results [Ann. Probab. 14, 612–652 (1986; Zbl 0604.60019); ibid. 15, 728–747 (1987; Zbl 0637.60025)] where \(f(t)\sim ct^\alpha \exp(-t^p)\) for \(c>0\), \(\alpha\in\mathbb R\) and \(p>1\).

MSC:

62G32 Statistics of extreme values; tail inference
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
Full Text: DOI

References:

[1] Balkema, A.A., Klüppelberg, C. and Resnick, S.I. (1993) Densities with Gaussian tails. Proc. London Math. Soc. (3), 66, 568-588. · Zbl 0789.60010 · doi:10.1112/plms/s3-66.3.568
[2] Barndorff-Nielsen, O.E. and Klüppelberg, C. (1992) A note on the tail accuracy of the univariate saddlepoint approximation. Ann. Fac. Sci. Toulouse (6), 1, 5-14. · Zbl 0790.62024 · doi:10.5802/afst.734
[3] Billingsley, P. (1999) Convergence of Probability Measures (2nd edn). New York: Wiley. · Zbl 0944.60003
[4] Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987) Regular Variation. Cambridge: Cambridge University Press. · Zbl 0617.26001
[5] Bollerslev, T. (1986) Generalized autoregressive conditional heteroscedasticity. J. Econometrics, 31, 307-327. · Zbl 0865.62085 · doi:10.1016/S0304-4076(95)01749-6
[6] Breidt F.J. and Davis, R.A. (1998) Extremes of stochastic volatility models. Ann. Appl. Probab., 8, 664-675. · Zbl 0941.60069 · doi:10.1214/aoap/1028903446
[7] Davis, R. and Resnick, S.I. (1985) Limit theory for moving averages of random variables with regularly varying tail probabilites. Ann. Probab., 13, 179-195. · Zbl 0562.60026 · doi:10.1214/aop/1176993074
[8] Davis, R. and Resnick, S.I. (1988) Extremes of moving averages of random variables from the domain of attraction of the double exponential distribution. Stochastic Process. Appl., 30, 41-68. · Zbl 0657.60028 · doi:10.1016/0304-4149(88)90075-0
[9] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997) Modelling Extremal Events for Insurance and Finance. Berlin: Springer-Verlag. · Zbl 0873.62116
[10] Engle, R.F. (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987-1007. JSTOR: · Zbl 0491.62099 · doi:10.2307/1912773
[11] Leadbetter, M.R., Lindgren, G. and Rootzén, H. (1983) Extremes and Related Properties of Random Sequences and Processes. New York: Springer-Verlag. · Zbl 0518.60021
[12] Lindner, A.M. and Meyer, K.M.M. (2002) Extremal behavior of finite EGARCH processes. Preprint (available at http://www-m4.mathematik.tu-muenchen.de/m4/Papers/). URL:
[13] Nelson, D.B. (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica, 59, 347-370. JSTOR: · Zbl 0722.62069 · doi:10.2307/2938260
[14] Resnick, S. (1987) Extreme Values, Regular Variation, and Point Processes. New York: Springer- Verlag. · Zbl 0633.60001
[15] Rootzén, H. (1986) Extreme value theory for moving averages. Ann. Probab., 14, 612-652. · Zbl 0604.60019 · doi:10.1214/aop/1176992534
[16] Rootzén, H. (1987) A ratio limit theorem for the tails of weighted sums. Ann. Probab., 15, 728-747. · Zbl 0637.60025 · doi:10.1214/aop/1176992168
[17] Taylor, S. (1986) Modelling Financial Time Series. New York: Wiley. · Zbl 1130.91345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.