×

Optimal scheduling for flexible job shop operation. (English) Zbl 1068.90057

Summary: This paper presents a new integer linear programming (ILP) model to schedule flexible job shop, discrete parts manufacturing industries that operate on a make-to-order basis. The model considers groups of parallel homogeneous machines, limited intermediate buffers and negligible set-up effects. Orders consist of a number of discrete units to be produced and follow one of a given number of processing routes. The model allows re-circulation to take place, an important issue in practice that has received scant treatment in the scheduling literature. Good solution times were obtained using commercial mixed-integer linear programming (MILP) software to solve realistic examples of flexible job shops to optimality. This supports the claim that recent advances in computational power and MILP solution algorithms are making this approach competitive with others traditionally applied in job shop scheduling.

MSC:

90B35 Deterministic scheduling theory in operations research
90B30 Production models
90C08 Special problems of linear programming (transportation, multi-index, data envelopment analysis, etc.)
Full Text: DOI

References:

[1] Brown DE, Intelligent Scheduling Systems pp pp. 1–40– (1995)
[2] DOI: 10.1021/ie000683r · doi:10.1021/ie000683r
[3] DOI: 10.1109/70.282536 · doi:10.1109/70.282536
[4] DOI: 10.1016/S0377-2217(97)00019-2 · Zbl 0951.90022 · doi:10.1016/S0377-2217(97)00019-2
[5] Dorn J, Project REFRESH–A Reusable and Extendible Framework for Reactive Scheduling (1998)
[6] French S, Sequencing and Scheduling: An Introduction to the Mathematics of the Job-shop (1982)
[7] GAMS–A User’s Guide (1998)
[8] DOI: 10.1016/S0098-1354(02)00100-X · doi:10.1016/S0098-1354(02)00100-X
[9] DOI: 10.1016/S0377-2217(98)00113-1 · Zbl 0938.90028 · doi:10.1016/S0377-2217(98)00113-1
[10] Jain AS, University of Dundee (1998)
[11] DOI: 10.1080/002075499190491 · Zbl 0949.90574 · doi:10.1080/002075499190491
[12] DOI: 10.1287/mnsc.24.4.441 · Zbl 0373.90034 · doi:10.1287/mnsc.24.4.441
[13] Liao C-J, J. Oper. Res. Soc. 43 pp 1047– (1992)
[14] DOI: 10.1109/66.542170 · doi:10.1109/66.542170
[15] DOI: 10.1080/00207540150504403 · Zbl 1060.90647 · doi:10.1080/00207540150504403
[16] DOI: 10.1109/9.231461 · doi:10.1109/9.231461
[17] DOI: 10.1287/opre.8.2.219 · doi:10.1287/opre.8.2.219
[18] DOI: 10.1080/095372899233451 · doi:10.1080/095372899233451
[19] DOI: 10.1080/00207729708929360 · Zbl 0873.90054 · doi:10.1080/00207729708929360
[20] DOI: 10.1021/ie950082d · doi:10.1021/ie950082d
[21] Pinedo M, Scheduling: Theory, Algorithms and Systems (1995)
[22] Reklaitis S, Overview of Scheduling and Planning of Batch Process Operations (1992)
[23] DOI: 10.1016/S0377-2217(01)00140-0 · Zbl 1008.90024 · doi:10.1016/S0377-2217(01)00140-0
[24] DOI: 10.1016/S0895-7177(00)00110-2 · Zbl 0969.90048 · doi:10.1016/S0895-7177(00)00110-2
[25] DOI: 10.1016/0098-1354(93)80016-G · doi:10.1016/0098-1354(93)80016-G
[26] Shapiro JF, Handbooks in Operations Research and Management Science, Volume 4: Logistics of Production and Inventory pp pp. 371–443– (1993)
[27] DOI: 10.1016/0098-1354(96)00211-6 · doi:10.1016/0098-1354(96)00211-6
[28] Sule DR, Industrial Scheduling (1997)
[29] Wilkinson SJ, Aggregate Formulations for Large-scale Process Scheduling Problems (1996)
[30] Yaghubian AR, IIE Trans. 33 pp 131– (2001)
[31] DOI: 10.1016/0098-1354(95)00186-7 · doi:10.1016/0098-1354(95)00186-7
[32] DOI: 10.1016/S0360-8352(00)00048-6 · doi:10.1016/S0360-8352(00)00048-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.