×

Multi-modal topological optimization of structure using immune algorithm. (English) Zbl 1068.74054

Summary: The authors describe a novel approach MMIA (multi-modal immune algorithm) for finding optimal solutions to multi-modal structural problems emulating the features of a biological immune system. The use of an immune algorithm as opposed to a genetic algorithm provides this methodology with superior local search ability. Inter-relationships within the proposed algorithm resemble antibody-antigen relationships in terms of specificity, germinal center, and the memory characteristics of adaptive immune responses. Gene fragment recombination and several antibody diversification schemes (including somatic recombination, somatic mutation, gene conversion, gene reversion, gene drift, and nucleotide addition) were incorporated into the MMIA in order to improve the balance between exploitation and exploration. Moreover, the concept of cytokines is applied for constraint handling. Two well-studied benchmark examples in structural topology optimization problems were used to evaluate the proposed approach. The results indicate the effectiveness of MMIA.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
92D99 Genetics and population dynamics

References:

[1] Kibsgaard, S., Sensitivity analysis-the basis for optimization, Int. J. Numer. Methods Engrg., 34, 901-932 (1992)
[2] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197-224 (1988) · Zbl 0671.73065
[3] Suzuki, K.; Kikuchim, N., A homogenization method for shape and topology optimization, Comput. Methods Appl. Mech. Engrg., 93, 291-318 (1991) · Zbl 0850.73195
[4] Tenek, L. H.; Hagiwara, I., Static and vibrational shape and topology optimization using homogenization and mathematical programming, Comput. Methods Appl. Mech. Engrg., 109, 143-154 (1993) · Zbl 0848.73047
[5] Lin, C. Y.; Chou, J. N., A two-stage approach for structural topology optimization, Adv. Engrg. Software, 30, 261-271 (1999)
[6] Allaire, G.; Kohn, R. V., Optimal design for minimum weight and compliance in plane stress using external microstructures, Eur. J. Mech. A/Solid, 12, 6, 839-878 (1993) · Zbl 0794.73044
[7] Kane, C.; Schoenauer, M., Topological optimum using genetic algorithm, Control Cybernet., 25, 1059-1088 (1996) · Zbl 0877.73044
[8] Xie, Y. M.; Steven, G. P., A simple evolutionary procedure for structural optimization, Comput. Struct., 49, 885-896 (1993)
[9] Xie, Y. M.; Steven, G. P., A simple approach to structural frequency optimization, Comput. Struct., 53, 1487-1491 (1994)
[10] Xie, Y. M.; Steven, G. P., Evolutionary structural optimization for dynamic problem, Comput. Struct., 48, 1067-1073 (1996) · Zbl 0900.73510
[11] Liu, J. S.; Parks, G. T.; Clarkson, P. J., Metamorphic development: a new topology optimization method for continuum structures, Struct. Multidisc. Optim., 20, 288-300 (2000)
[12] Querin, O. M.; Steven, G. P.; Xie, Y. M., Evolutionary structural optimization (ESO) using a bidirectional algorithm, Engrg. Comput., 15, 1031-1048 (1998) · Zbl 0938.74056
[13] Kirkpatrick, S.; Gelatt, C.; Vecchi, M., Optimization by simulated annealing, Science, 220, 671-680 (1983) · Zbl 1225.90162
[14] Goldberg, D.; Samtani, M., Engineering optimization via genetic algorithm, (Electronic Computation-Proceedings of the Ninth Conference on Electronic Computation (1986), American Society of Civil Engineers: American Society of Civil Engineers Alabama at Birmingham), 471-482
[15] H. Bersini, F.J. Varela, The immune recruitment mechanism: a selective evolutionary strategy, in: Proceedings of the Fourth International Conference on Genetic Algorithms, 1991, pp. 520-526; H. Bersini, F.J. Varela, The immune recruitment mechanism: a selective evolutionary strategy, in: Proceedings of the Fourth International Conference on Genetic Algorithms, 1991, pp. 520-526
[16] Anagnostou, G.; Rønquist, E.; Patera, A., A computational procedure for part design, Comput. Methods Appl. Mech. Engrg., 97, 33-48 (1992) · Zbl 0763.73079
[17] Rajeev, S.; Krishnamoorthy, C. S., Discrete optimization of structures using genetic algorithms, Struct. Engrg., 118, 1233-1250 (1992)
[18] Wu, S. J.; Chow, P. T., Steady-state genetic algorithms for discrete optimization of trusses, Comput. Struct., 56, 979-991 (1995) · Zbl 0900.73943
[19] Jenkins, W., Structural optimization with the genetic algorithm, Struct. Engrg., 69, 418-422 (1991)
[20] Woon, S. Y.; Querin, O. M.; Steven, G. P., Structural application of a shape optimization method based on a genetic algorithm, Struct. Multidisc. Optim., 22, 57-64 (2001)
[21] Chapman, C.; Saitou, K.; Jakiela, M., Genetic algorithms as an approach to configuration and topology design, ASME J. Mech. Des., 116, 1005-1012 (1994)
[22] Jakiela, M. J.; Chapman, C.; Duda, J.; Adewuya, A.; Saitou, K., Continuum structural topology design with genetic algorithms, Comput. Methods Appl. Mech. Engrg., 186, 339-356 (2000) · Zbl 0957.74038
[23] I. Tazawa, S. Koakutsu, H. Hirata, An immunity based genetic algorithm and its application to the VLSI floorplan design problem, in: Proceedings of IEEE International Conference on Evolutionary Computation, 1996, pp. 417-421; I. Tazawa, S. Koakutsu, H. Hirata, An immunity based genetic algorithm and its application to the VLSI floorplan design problem, in: Proceedings of IEEE International Conference on Evolutionary Computation, 1996, pp. 417-421
[24] Mori, K.; Tsukiyama, M.; Fukuda, T., Immune algorithm with searching diversity and its application to resource allocation problem, IEE Japan, 113-C, 872-878 (1993)
[25] Chun, J. S.; Lim, J. P.; Jung, H. K.; Yoon, J. S., Optimal design of synchronous motor with parameter correction using immune algorithm, IEEE Trans. Energy Convers., 14, 610-615 (1999)
[26] Jiao, L.; Wang, L., A novel genetic algorithm based on immunity, IEEE Trans. Syst. Man Cybernet.–Part A: Syst. Humans, 30, 552-561 (2000)
[27] Hajela, P.; Yoo, J.; Lee, J., GA based simulation of immune networks applications in structural optimization, Engrg. Optim., 22, 131-149 (1997)
[28] Yoo, J.; Hajela, P., Immune network simulations in multi-criterion design, Struct. Optim., 18, 85-94 (1999)
[29] Fukuda, T.; Mori, K.; Tsukiyama, M., Parallel search for multi-modal function optimization with diversity and learning of immune algorithm, (Dasgupta, D., Artificial Immune Systems and Their Applications (1999), Springer-Verlag: Springer-Verlag Berlin, Heidelberg) · Zbl 1098.68653
[30] J.S. Chun, J.P. Lim, H.K. Jung, H.K. Jung, Multisolution optimization of permanent magnet linear synchronous motor for high thrust and acceleration operation, in: Electric Machines and Drives, International Conference IEMD ’99, 1999, pp. 57-59; J.S. Chun, J.P. Lim, H.K. Jung, H.K. Jung, Multisolution optimization of permanent magnet linear synchronous motor for high thrust and acceleration operation, in: Electric Machines and Drives, International Conference IEMD ’99, 1999, pp. 57-59
[31] Dasgupta, D., Artificial Immune Systems and Their Applications (1999), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0904.00028
[32] de Castro, L. N.; Jonathan, T., Artificial Immune Systems: A New Computational Intelligence Approach (1999), Springer-Verlag
[33] Corne, D.; Dorigo, M.; Glover, F., (Coren, D.; Dorigo, M.; Glover, F., New Ideas in Optimization, Part Three: Immune System Methods (1999), McGraw-Hill: McGraw-Hill New York)
[34] Luh, G. C.; Chueh, C. H.; Liu, W. W., MOIA: Multi-objective immune algorithm, Engrg. Optim., 35, 143-164 (2003)
[35] E. Zitzler, L. Thiele, An evolutionary algorithm for multi-objective optimization: the strength Pareto approach, Technical Report 43, Computer Engineering and Communication Network Lab (TIK), Swiss Federal Institute of Technology (EIH), Zurich, Switzerland, 1998; E. Zitzler, L. Thiele, An evolutionary algorithm for multi-objective optimization: the strength Pareto approach, Technical Report 43, Computer Engineering and Communication Network Lab (TIK), Swiss Federal Institute of Technology (EIH), Zurich, Switzerland, 1998
[36] E. Zitzler, L. Marco, Test problems and test data for multiobjective optimizers, Test Problem Suite, http://www.tik.ee.ethz.ch/ zitzler/testdata.html; E. Zitzler, L. Marco, Test problems and test data for multiobjective optimizers, Test Problem Suite, http://www.tik.ee.ethz.ch/ zitzler/testdata.html
[37] T. Murata, H. Ishibuchi, MOGA: Multi-objective genetic algorithms, in: Proceedings of the Second IEEE International Conference on Evolutionary Computation, 1995, pp. 289-294; T. Murata, H. Ishibuchi, MOGA: Multi-objective genetic algorithms, in: Proceedings of the Second IEEE International Conference on Evolutionary Computation, 1995, pp. 289-294
[38] J. Horn, N. Nafpliotis, D.E. Goldberg, A niched Pareto genetic algorithm for multi-objective optimization, in: Proceedings of the First IEEE Conference on Evolutionary Computation, 1994, pp. 82-87; J. Horn, N. Nafpliotis, D.E. Goldberg, A niched Pareto genetic algorithm for multi-objective optimization, in: Proceedings of the First IEEE Conference on Evolutionary Computation, 1994, pp. 82-87
[39] Srinivas, N.; Deb, K., Multi-objective optimization using non-dominated sorting in genetic algorithms, Evol. Comput., 2, 3, 221-248 (1994)
[40] G.C. Luh, C.H. Chueh, C.Y. Wu, Multi-objective optimization design using immune algorithm, in: The Second China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems (CJK-OSM 2), 2002, pp. 539-544; G.C. Luh, C.H. Chueh, C.Y. Wu, Multi-objective optimization design using immune algorithm, in: The Second China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems (CJK-OSM 2), 2002, pp. 539-544
[41] D. Goldberg, J. Richardson, Genetic algorithms with sharing for multimodal function optimization, in: Proceedings of the Second International Conference on Genetic Algorithms, 1987, pp. 41-49; D. Goldberg, J. Richardson, Genetic algorithms with sharing for multimodal function optimization, in: Proceedings of the Second International Conference on Genetic Algorithms, 1987, pp. 41-49
[42] L.N. de Castro, F.J. Von Zuben, Artificial immune systems: Part I-basic theory and applications, Technical Report TR-DCA 01/99 (1999), Department of Computer Engineering and Industrial Automation, State University of Campinas, SP, Brazil; L.N. de Castro, F.J. Von Zuben, Artificial immune systems: Part I-basic theory and applications, Technical Report TR-DCA 01/99 (1999), Department of Computer Engineering and Industrial Automation, State University of Campinas, SP, Brazil
[43] I. Roitt, J. Brostoff, Immunology, 5/e, Mosby International Ltd., 1998; I. Roitt, J. Brostoff, Immunology, 5/e, Mosby International Ltd., 1998
[44] Little, M.; Breitling, F.; Dubel, S.; Fuchs, P.; Braunagel, M., Human antibody libraries in Escherichia coli, J. Biotechnol., 41, 187-195 (1995)
[45] Krawinkel, U.; Zoebelein, G.; Bruggemann, M.; Radburch, A.; Rajewsky, K., Recombination between antibody heavy chain variable-region genes: evidence for gene conversion, Proc. Natl. Acad. Sci. USA, 80, 4997-5001 (1983)
[46] Harris, R. S.; Kong, Q.; Maizels, N., Somatic hypermutation and the three R’s: repair, replication and recombination, Mutat. Res., 436, 157-178 (1999)
[47] Perelson, A. S.; Mirmirani, M.; Oster, G. F., Optimal strategies in immunology. II. B memory cell production, J. Math. Biol., 3, 325-367 (1978) · Zbl 0395.92006
[48] Manser, T.; Wysocki, L. J.; Margolies, M. N.; Gefter, M. L., Evolution of antibody variable region structure during the immune response, Immunol. Rev., 96, 141-162 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.