×

Nonparametric regression analysis of uncertain and imprecise data using belief functions. (English) Zbl 1068.68149

Summary: This paper introduces a new approach to regression analysis based on a fuzzy extension of belief function theory. For a given input vector \(x\), the method provides a prediction regarding the value of the output variable \(y\), in the form of a Fuzzy Belief Assignment (FBA), defined as a collection of fuzzy sets of values with associated masses of belief. The output FBA is computed using a nonparametric, instance-based approach: training samples in the neighborhood of \(x\) are considered as sources of partial information on the response variable; the pieces of evidence are discounted as a function of their distance to \(x\), and pooled using Dempster’s rule of combination. The method can cope with heterogeneous training data, including numbers, intervals, fuzzy numbers, and, more generally, fuzzy belief assignments, a convenient formalism for modeling unreliable and imprecise information provided by experts or multi-sensor systems. The performances of the method are compared to those of standard regression techniques using several simulated data sets.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
Full Text: DOI

References:

[1] Dempster, A. P., Upper and lower probabilities induced by a multivalued mapping, Annals of Mathematical Statistics, AMS-38, 325-339 (1967) · Zbl 0168.17501
[2] Denœux, T., A \(k\)-nearest neighbor classification rule based on Dempster-Shafer theory, IEEE Transactions on Systems, Man and Cybernetics, 25, 5, 804-813 (1995)
[3] Denœux, T., Application du modèle des croyances transférables en reconnaissance de formes, Traitement du Signal, 14, 5, 443-451 (1998) · Zbl 1002.68773
[4] Denœux, T., Modeling vague beliefs using fuzzy-valued belief structures, Fuzzy Sets and Systems, 116, 2, 167-199 (2000) · Zbl 1054.68676
[5] Denœux, T., A neural network classifier based on Dempster-Shafer theory, IEEE Transactions on Systems, Man and Cybernetics A, 30, 2, 131-150 (2000)
[6] Denœux, T., Inner and outer approximation of belief structures using a hierarchical clustering approach, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9, 4, 437-460 (2001) · Zbl 1113.68494
[7] Denœux, T.; Zouhal, L. M., Handling possibilistic labels in pattern classification using evidential reasoning, Fuzzy Sets and Systems, 122, 3, 47-62 (2001) · Zbl 1063.68635
[8] Diamond, Ph.; Tanaka, H., Fuzzy regression analysis, (Slowinski, R., Fuzzy Sets in Decision Analysis, Operations Research and Statistics (1998), Kluwer academic Publishers: Kluwer academic Publishers Norwell), 349-387 · Zbl 0922.62058
[9] Dubois, D.; Prade, H., Possibility Theory: An Approach to Computerized Processing of Uncertainty (1988), Plenum Press: Plenum Press New York · Zbl 0703.68004
[10] Dubois, D.; Prade, H., Decision evaluation methods under uncertainty and imprecision, (Kacprzyk, V.; Fedrizzi, M., Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decision Making (1989), Springer Verlag: Springer Verlag Berlin), 48-65 · Zbl 0662.90004
[11] Fabre, S.; Appriou, A.; Briottet, X., Presentation and description of two classification methods using data fusion based on sensor management, Information Fusion, 2, 49-71 (2001) · Zbl 1113.68436
[12] Härdle, W., Applied Nonparametric Regression (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0714.62030
[13] Hastie, T.; Tibshirani, R.; Friedman, J., The Elements of Statistical Learning (2001), Springer: Springer New York · Zbl 0973.62007
[14] Hastie, T. J.; Tibshirani, R. J., Generalized Additive Models (1990), Chapman and Hall: Chapman and Hall New York · Zbl 0747.62061
[15] Jang, J. S.R; Sun, C. T.; Mizutani, E., Neuro-Fuzzy and Soft Computing (1997), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ
[16] S. Petit-Renaud, Application de la théorie des croyances et des systèmes flous à l’estimation fonctionnelle en présence d’informations incertaines ou imprécises (in French). Ph.D. thesis, Université de Technologie de Compiègne, 1999; S. Petit-Renaud, Application de la théorie des croyances et des systèmes flous à l’estimation fonctionnelle en présence d’informations incertaines ou imprécises (in French). Ph.D. thesis, Université de Technologie de Compiègne, 1999
[17] Petit-Renaud, S.; Denœux, T., Handling different forms of uncertainty in regression analysis: a fuzzy belief structure approach, (Hunterm, A.; Pearsons, S., Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’99) (1999), Springer Verlag: Springer Verlag London), 340-351
[18] S. Petit-Renaud, T. Denœux, Regression analysis using fuzzy evidence theory, in: Proceedings of FUZZ-IEEE’99, vol. 3, Seoul, August 1999, pp. 1229-1234; S. Petit-Renaud, T. Denœux, Regression analysis using fuzzy evidence theory, in: Proceedings of FUZZ-IEEE’99, vol. 3, Seoul, August 1999, pp. 1229-1234
[19] Shafer, G., A mathematical theory of evidence (1976), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0359.62002
[20] Smets, P., The transferable belief model for quantified belief representation, (Gabbay, D. M.; Smets, P., Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 1 (1998), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 267-301 · Zbl 0939.68112
[21] Smets, Ph., The degree of belief in a fuzzy event, Information Sciences, 25, 1-19 (1981) · Zbl 0472.62005
[22] Smets, Ph., Varieties of ignorance, Information Sciences, 57-58, 135-144 (1991)
[23] Smets, Ph., What is Dempster-Shafer’s model?, (Advances in the Dempster-Shafer Theory of Evidence (1994), Wiley), 5-34
[24] Smets, Ph.; Kennes, R., The transferable belief model, Artificial Intelligence, 66, 191-243 (1994) · Zbl 0807.68087
[25] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 15, 116-132 (1985) · Zbl 0576.93021
[26] Yager, R. R., Generalized probabilities of fuzzy events from fuzzy belief structures, Information Sciences, 28, 45-62 (1982) · Zbl 0525.60006
[27] Yager, R. R., On the normalization of fuzzy belief structure, International Journal of Approximate Reasoning, 14, 127-153 (1996) · Zbl 0935.03036
[28] Yager, R. R.; Filev, D. P., Including probabilistic uncertainty in fuzzy logic controller modeling using Dempster-Shafer theory, IEEE Transactions on Systems, Man and Cybernetics, 25, 8, 1221-1230 (1995)
[29] Yen, J., Generalizing the Dempster-Shafer theory to fuzzy sets, IEEE Transactions on Systems, Man and Cybernetics, 20, 3, 559-569 (1990) · Zbl 1134.68565
[30] Zadeh, L. A., Fuzzy sets and information granularity, (Ragade, R. K.; Gupta, M. M.; Yager, R. R., Advances in Fuzzy Sets Theory and Applications (1979), North-Holland Publishing Co), 3-18 · Zbl 0377.04002
[31] Zouhal, L. M.; Denœux, T., An evidence-theoretic \(k\)-NN rule with parameter optimization, IEEE Transactions on Systems, Man and Cybernetics C, 28, 2, 263-271 (1998)
[32] Zwick, R.; Carlstein, E.; Budescu, D. V., Measures of similarity among fuzzy concepts: a comparative analysis, International Journal of Approximate Reasoning, 1, 221-242 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.