×

One-dimensional stability of viscous strong detonation waves. (English) Zbl 1067.76041

Summary: Building on Evans-function techniques developed to study the stability of viscous shocks, we examine the stability of strong-detonation-wave solutions of the Navier-Stokes equations for reacting gas. The primary result is the calculation of a stability index whose sign determines a necessary condition for spectral stability. We show that for an ideal gas this index can be evaluated in the Zeldovich-von Neumann-Döring limit of vanishing dissipative effects. Moreover, when the heat of reaction is sufficiently small, we prove that strong detonations are spectrally stable provided that the underlying shock is stable. Finally, for completeness, we include the calculation of the stability index for a viscous shock solution of Navier-Stokes equations for a nonreacting gas.

MSC:

76E17 Interfacial stability and instability in hydrodynamic stability
76L05 Shock waves and blast waves in fluid mechanics
76V05 Reaction effects in flows

References:

[1] Alexander, J., Gardner, R., Jones, C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Agnew Math. 410, 167–212 (1990) · Zbl 0705.35070
[2] Benzoni-Gavage, S., Serre, D., Zumbrun, K.: Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32, 929–962 (electronic) (2001) · Zbl 0985.34075 · doi:10.1137/S0036141099361834
[3] Burlioux, A., Majda, A.J., Roytburd, V.: Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51, 303–343 (1991) · Zbl 0731.76076 · doi:10.1137/0151016
[4] Campbell, C., Woodhead, D.W.: The Ignition of gases by an explosion wave, I:Carbon monoxide and carbon mixtures. J. Chem. Soc. 129, 3010–3021 (1926) · doi:10.1039/JR9262903010
[5] Campbell, C., Woodhead, D.W.: Striated photographic records of explosion waves. J. Chem. Soc. 130, 1572–1578 (1927) · doi:10.1039/JR9270001572
[6] Chen G.-Q., Hoff D., Trivisa K.: On the Navier-Stokes equations for exothermically reacting compressible fluid. Acta Mathematicae Applicatae Sinica (English Series) 18, 15–36 (2002) · Zbl 1032.76056 · doi:10.1007/s102550200002
[7] Coppel, W. A.: Stability and Asymptotic Behavior of Differential Equations. Boston Mass.: D. C. Heath and Co., 1965 · Zbl 0154.09301
[8] Courant, R., Friedrichs, K.: Supersonic Flow and Shock Waves. New York: Springer-Verlag, 1976 · Zbl 0365.76001
[9] Evans, J.: Nerve axon equations, I: Linear approximations. Indiana Univ. Math. J. 21, 877–855 (1972) · Zbl 0235.92002 · doi:10.1512/iumj.1972.21.21071
[10] Evans, J.: Nerve axon equations, II: Stability at rest. Indiana Univ. Math. J. 22, 75–90 (1972) · Zbl 0236.92010 · doi:10.1512/iumj.1973.22.22009
[11] Evans, J.: Nerve axon equations, III: Stability of the nerve impulse. Indiana Univ. Math. J. 22, 577–593 (1972) · Zbl 0245.92004 · doi:10.1512/iumj.1973.22.22048
[12] Evans, J.: Nerve axon equations, IV: The stable and unstable impulse. Indiana Univ. Math. J. 24, 1169–1190 (1975) · Zbl 0317.92006 · doi:10.1512/iumj.1975.24.24096
[13] Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differential Equations 31, 53–98 (1979) · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[14] Fickett, W., Davis, W.: Detonation: Theory and Experiment. Berkeley: University of California Press, 1979
[15] Fickett, W., Wood,W.W.: Flow calculations for pulsating one-dimensional detonations. Phys. Fluids 9, 903–916 (1966) · doi:10.1063/1.1761791
[16] Freistühler, H., Szmolyan, P.: Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves. SIAM J. Math. Anal. 26, 112–128 (1995) · Zbl 0817.34028 · doi:10.1137/S0036141093247366
[17] Gardner, R., Zumbrun, K.: The gap lemma and geometric criteria for the instability of viscous shocks. Commun Pure Appl. Math. 51, 797–855 (1998) · Zbl 0933.35136 · doi:10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1
[18] Gasser, I. Szmolyan, P.: A geometric singular perturbation analysis of detonation and deflagration waves. SIAM J. Math. Anal. 24, 968–986 (1993) · Zbl 0783.76099 · doi:10.1137/0524058
[19] Gasser, I. Szmolyan, P.: Detonation and deflagration waves with multistep reaction schemes. SIAM J. Appl. Math. 55, 175–191 (1995) · Zbl 0814.34028 · doi:10.1137/S0036139993244776
[20] Gel’fand, I.M.: Some problems in the theory of quasilinear equations. Amer. Math. Soc. Transl. (2) 29, 295–381 (1963)
[21] Gilbarg, D.: The existence and limit behavior of the one-dimensional shock layer. Amer. J. Math. 73, 256–274 (1951) · Zbl 0044.21504 · doi:10.2307/2372177
[22] Gordon, W.E., Mooradian, A.J., Harper, S.A.: Limit and spine effects in hydrogen-oxygen detonations. In: Seventh Symposium (International) on Combustion. Academic Press, 1959, pp. 752–759
[23] Henry, D.: Geometric theory of semilinear parabolic equations. Berlin: Springer-Verlag, 1981 · Zbl 0456.35001
[24] Hesaaraki, M., Razani, A.: Detonative travelling waves for combustions. Applicable Anal. 77, 405–418 (2001) · Zbl 1022.80007 · doi:10.1080/00036810108840918
[25] Humpherys, J.: On Spectral Stability of strong shocks for Isentropic Gas Dynamics. Preprint · Zbl 1163.35454
[26] Jenssen, H.K., Lyng, G.: Evaluation of the Lopatinski determinant for multi-dimensional Euler equations, 2002, appendix to [69]
[27] Kapitula, T., Sandstede B.: Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations. Phys. D 124, 58–103 (1998) · Zbl 0935.35150 · doi:10.1016/S0167-2789(98)00172-9
[28] Kasimov, A., Stewart, D.S.: Spinning instability of gaseous detonations. J. Fluid Mech. 466, 179–203 (2002) · Zbl 1013.76034 · doi:10.1017/S0022112002001192
[29] Kato, T.: Perturbation Theory for Linear Operators Berlin: Springer-Verlag, 1995 Reprint of the 1980 edition
[30] Kawashima, S.: Systems of a hyperbolic-parabolic type with applications to the equations of magnetohydrodynamics. PhD thesis, Kyoto University, 1983
[31] Lee, H.I., Stewart, D.S.: Calculation of linear detonation instability: One-dimensional instability of plane detonation. J. Fluid Mech. 216, 103–132 (1990) · Zbl 0698.76120 · doi:10.1017/S0022112090000362
[32] Li, D., Liu, T.-P., Tan, D.: Stability of strong detonation waves to combustion model. J. Math. Anal. Appl. 201, 516–531 (1996) · Zbl 0862.35048 · doi:10.1006/jmaa.1996.0271
[33] Li, T.: On the Riemann problem for a combustion model. SIAM J. Math. Anal. 24, 59–75 (1993) · Zbl 0810.35059 · doi:10.1137/0524005
[34] Li, T.: On the initiation problem for a combustion model. J. Differential Equations 112, 351–373 (1994) · Zbl 0808.35073 · doi:10.1006/jdeq.1994.1108
[35] Li, T.: Rigorous asymptotic stability of a Chapman-Jouget detonation wave in the limit of small resolved heat release. Combustion Theory and Modeling 1, 259–270 (1997) · Zbl 1140.80403 · doi:10.1080/713665323
[36] Li, T.: Stability of strong detonation waves and rates of convergence. Elec. J. Diff. Eqns. 1998, 1–77 (1998)
[37] Li, T.: Stability and instability of detonation waves. In: Hyperbolic Problems: Theory Applications &amp; Numerics; Seventh International Conference in Zürich, 1999
[38] Liu, T.-P., Ying, L.: Nonlinear stability of strong detonations for a viscous combustion model. SIAM J. Math. Analy. 26, 519–528 (1995) · Zbl 0829.35053 · doi:10.1137/S0036141093259063
[39] Liu, T.-P., Yu, S.: Nonlinear stability of weak detonation waves for a combustion model. Commun. Math. Phys. 204, 551–586 (1999) · Zbl 0976.76036 · doi:10.1007/s002200050657
[40] Lyng, G.: One Dimensional Stability of Detonation Waves. PhD thesis, Indiana University, 2002 · Zbl 1067.76041
[41] Lyng, G., Zumbrun, K.: A stability index for detonation waves in majda’s model for reacting flow. Physica D, to appear · Zbl 1061.35018
[42] Majda, A.: A qualitative model for dynamic combustion. SIAM J. Appl. Math. 41, 70–93 (1981) · Zbl 0472.76075 · doi:10.1137/0141006
[43] Majda, A.: Compressible Fluid Flows and Systems of Conservation Laws. New York: Springer-Verlag, 1983
[44] Majda, A., Pego R.L.: Stable viscosity matrices for systems of conservation laws. J. Differential Equations 56, 229–262 (1985) · Zbl 0512.76067 · doi:10.1016/0022-0396(85)90107-X
[45] Manson, N., Brochet, C., Brossard, J., Pujol, Y.: Vibratory phenomena and instability of self-sustained detonations in gases. In: Ninth Symposium (International) on Combustion, pp. 461–469 Academic Press, 1963
[46] Mascia, C., Zumbrun, K.: Pointwise Green’s function bounds and stability of relaxation shocks. Indiana Univ. Math. J. 51, 773–904 (2002) · Zbl 1036.35135 · doi:10.1512/iumj.2002.51.2212
[47] Mascia, C., Zumbrun, K.: Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169, 177–263 (2003) · Zbl 1035.35074 · doi:10.1007/s00205-003-0258-5
[48] Mascia, C., Zumbrun, K.: Stability of viscous shock Profiles for dissipative symmetric hyperbolic-parabolic systems. Comm. Pure. Appl. Math., to appear · Zbl 1058.35160
[49] Menikoff, R., Plohr, B.J.: The Riemann problem for fluid flow of real materials. Rev. Modern Phys. 61, 75–130 (1999) · Zbl 1129.35439 · doi:10.1103/RevModPhys.61.75
[50] Mundy, G., Ubbelhode, F.R.S., Wood, I.F.: Fluctuating detonations in gases. Proc. Roy. Soc. A 306, 171–178 (1968) · doi:10.1098/rspa.1968.0143
[51] Roquejoffre, J., Vila. J.: Stability of ZND detonation waves in the majda combustion model. Asymptotic Anal. 18, 329–348 (1998) · Zbl 0931.35026
[52] Serre, D.: La transition vers l’instabilité pour les ondes de choc multi-dimensionnelles. Trans. Amer. Math. Soc. 353, 5071–5093 (2001) (electronic) · Zbl 1078.35521 · doi:10.1090/S0002-9947-01-02831-8
[53] Serre, D., Zumbrun, K.: Boundary layer stability in real vanishing viscosity limit. Comm. Math. Phys. 202, 547–569 (2001) · Zbl 0988.35028
[54] Shizuta, Y., Kawashima, S.: Systems of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 435–457 (1984) · Zbl 0634.76120
[55] Short, M., Stewart, D.S.: Low-frequency two-dimensional linear instability of plane detonation. J. Fluid Mech. 340, 249–295 (1997) · Zbl 0959.76028 · doi:10.1017/S0022112097005120
[56] Short, M., Stewart, D.S.: Cellular detonation stability. I. A normal-mode linear analysis. J. Fluid Mech. 368, 229–262 (1998) · Zbl 0926.76051
[57] Short, M., Stewart, D.S.: The multi-dimensional stability of weak-heat-release detonations. J. Fluid Mech. 382, 109–135 (1999) · Zbl 0932.76024 · doi:10.1017/S0022112098003759
[58] Szepessy, A.: Dynamics and stability of a weak detonation wave. Commun. Math. Phys. 202, 547–569 (1999) · Zbl 0947.35019 · doi:10.1007/s002200050595
[59] Szmolyan, P.: Transversal heteroclinic and homoclinic orbits in singular perturbation problems. J. Differential Equations 92, 252–281 (1991) · Zbl 0734.34038 · doi:10.1016/0022-0396(91)90049-F
[60] Tan, D., Tesei, A.: Nonlinear stability of strong detonation waves in gas dynamical combustion. Nonlinearity 10, 355–376 (1997) · Zbl 0906.35077 · doi:10.1088/0951-7715/10/2/003
[61] Weyl, H.: Shock waves in arbitrary fluids. Commun. Pure Appl. Math. 2, 103–122 (1949) · Zbl 0035.42004 · doi:10.1002/cpa.3160020201
[62] Williams, F.: Combustion Theory. Menlo Park: Benjamin/Cummings, 1985
[63] Zumbrun, K.: Stability of viscous shock waves. Lecture Notes Indiana University, 1998 · Zbl 0928.35018
[64] Zumbrun, K.: Multidimensional stability of shock waves. Lecture Notes, Indiana University, 2000 · Zbl 0989.35089
[65] Zumbrun, K.: Multidimensional stability of planar viscous shock waves. In: Advances in the Theory of Shock Waves, number 47 in Progress in Nonlinear Differential Equations and Applications, pp. 307–516, Birkhauser, 2001 · Zbl 0989.35089
[66] Zumbrun, K., Howard, P.: Pointwise semigroup methods and the stability of viscous shocks. Indiana Univ. Math. J. 47, 741–871 (1998) · Zbl 0928.35018 · doi:10.1512/iumj.1998.47.1604
[67] Zumbrun, K., Serre, D.: Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937–999 (1999) · Zbl 0944.76027 · doi:10.1512/iumj.1999.48.1765
[68] Zumbrun, K.: Stability index for relaxation and real viscosity systems, 2002. available at math.indiana.edu/home/kzumbrun (corrected appendix of [65])
[69] Zumbrun, K.: Stability of Large-Amplitude shock waves of compressible Navier-Stokes Equations. Handbook Math. Fluid Dyn. IV Elsevier, to appear · Zbl 1222.35156
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.