×

A four-node shell element with enhanced bending performance for springback analysis. (English) Zbl 1067.74583

Summary: Springback simulation is comprised of forming stage and springback stage. Since the amount of springback is determined by the residual stress, calculation of stress in forming stage is critical to the accuracy of springback simulation. A new shell element is proposed in this paper to improve accuracy and efficiency of springback simulation by describing complicated bending deformation accurately. It is applied to both explicit FEM and implicit FEM to conduct springback simulation. The present shell element showed twice faster convergence rate than previous shell elements in springback simulation. It implies that very fine meshes, which have been believed to be necessary for springback simulation, can be avoided by using the present shell element, so that overall computational efficiency can be much improved.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells

Software:

DYNA3D
Full Text: DOI

References:

[1] Zhu, Y.; Zacharia, T., A new one-point quadrature, quadrilateral shell element with drilling degrees of freedom, Comput. Methods Appl. Mech. Engrg., 136, 165-203 (1996) · Zbl 0918.73116
[2] Belytschko, T.; Lin, J.; Tsay, C., Explicit algorithms for the nonlinear dynamics and shells, Comput. Methods Appl. Mech. Engrg., 42, 225-251 (1984) · Zbl 0512.73073
[3] J. Hallquist, LS-DYNA3D Theoretical Manual, Livermore Software Technology Corporation, 1991; J. Hallquist, LS-DYNA3D Theoretical Manual, Livermore Software Technology Corporation, 1991
[4] Belytschko, T.; Wong, B.; Chiang, H., Advances in one-point quadrature shell elements, Comput. Methods Appl. Mech. Engrg., 96, 93-107 (1992) · Zbl 0760.73061
[5] Belytschko, T.; Leviathan, I., Physical stabilization of 4-node shell element with one-point quadrature, Comput. Methods Appl. Mech. Engrg., 113, 321-350 (1994) · Zbl 0846.73058
[6] L.M. Taylor, D.P. Flanagan, PRONTO2D a two-dimensional transient solid dynamics program, Technical Report, Sandia National Laboratories, 1987; L.M. Taylor, D.P. Flanagan, PRONTO2D a two-dimensional transient solid dynamics program, Technical Report, Sandia National Laboratories, 1987
[7] Belytschko, T.; Leviathan, I., Projection schemes for one-point quadrature shell elements, Comput. Methods Appl. Mech. Engrg., 115, 277-286 (1994)
[8] Dvorkin, E. N.; Bathe, K. J., A continuum mechanics based four-node shell element for general nonlinear analysis, Engrg. Comput., 1, 77-88 (1984)
[9] Rankin, C. C.; Nour-Omid, B., The use of projectors to improve finite element performance, Comput. Struct., 30, 257-267 (1988) · Zbl 0668.73054
[10] Ibrahimbegovic, A., Stress resultant geometrically nonlinear shell theory with drilling rotations-Part I. A consistent formulation, Comput. Methods Appl. Mech. Engrg., 118, 265-284 (1994) · Zbl 0849.73036
[11] Ibrahimbegovic, A.; Frey, F., Stress resultant geometrically nonlinear shell theory with drilling rotations-Part II. A consistent formulation, Comput. Methods Appl. Mech. Engrg., 118, 285-308 (1994) · Zbl 0849.73037
[12] Allman, D., A quadrilateral finite element including vertex rotations for plane elasticity problems, Int. J. Numer. Methods Engrg., 26, 717-739 (1988) · Zbl 0633.73073
[13] Allman, D., A compatible triangular element including vertex rotations for plane elasticity analysis, Comput. Struct., 19, 1-8 (1984) · Zbl 0548.73049
[14] Cook, R., On the Allman triangle and a related quadrilateral element, Comput. Struct., 22, 6, 1065-1067 (1986)
[15] Cook, R., Four-node flat shell element: drilling degrees of freedom, membrane-bending coupling, warped geometry, and behavior, Comput. Struct., 50, 4, 549-555 (1994)
[16] Wilson, E. L.; Taylor, R. L.; Doherty, W. P.; Ghaboussi, J., Incompatible displacement models, (Fenves, S. J.; Perrone, N.; Robinson, A. R.; Schnobrich, W. C., Numerical and Computer Models in Structural Mechanics (1973), Academic Press: Academic Press New York), 43-57
[17] Ibrahimbegovic, A.; Wilson, E., A modified method of incompatible modes, Comm. Appl. Num. Methods, 7, 187-194 (1991) · Zbl 0723.73097
[18] Tessler, A.; Dong, S., On a hierarchy of conforming Timoshenko beam elements, Comput. Struct., 14, 335-344 (1981)
[19] Friedman, Z.; Kosmatka, J., An improved two-node Timoshenko beam finite element, Comput. Struct., 47, 3, 473-481 (1993) · Zbl 0775.73249
[20] Reddy, J. N., On locking-free shear deformable beam finite elements, Comput. Methods Appl. Mech. Engrg., 149, 113-132 (1997) · Zbl 0918.73131
[21] Hughes, T.; Brezzi, F., On drilling degrees of freedom, Comput. Methods Appl. Mech. Engrg., 72, 105-121 (1989) · Zbl 0691.73015
[22] Stolarski, H.; Belytschko, T.; Carpenter, N., Bending and shear mode decomposition in \(c_0\) structural elements, J. Struct. Mech., 11, 2, 153-176 (1983)
[23] Hughes, T.; Tezduyar, T., Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element, J. Appl. Mech., 48, 587-596 (1981) · Zbl 0459.73069
[24] MacNeal, R., A simple quadrilateral shell element, Comput. Struct., 8, 175-183 (1978) · Zbl 0369.73085
[25] Hughes, T.; Liu, W. K., Nonlinear finite element analysis of shells: Part I. Three-dimensional shells, Comput. Methods Appl. Mech. Engrg., 26, 331-362 (1981) · Zbl 0461.73061
[26] B. Engelmann, R. Whirley, A new elasto-plastic shell element formulation for DYNA3D, Technical Report, UCRL-JC-104826, Lawrence Livermore National Laboratory, 1990; B. Engelmann, R. Whirley, A new elasto-plastic shell element formulation for DYNA3D, Technical Report, UCRL-JC-104826, Lawrence Livermore National Laboratory, 1990
[27] B. Engelmann, R.G. Whirley, G. Goudreau, A simple shell element formulation for large-scale elasto-plastic analysis, Technical Report UCRL-99677, Lawrence Livermore National Laboratory, 1989; B. Engelmann, R.G. Whirley, G. Goudreau, A simple shell element formulation for large-scale elasto-plastic analysis, Technical Report UCRL-99677, Lawrence Livermore National Laboratory, 1989
[28] Proceedings of the 2nd International Conference NUMISHEET’93; Proceedings of the 2nd International Conference NUMISHEET’93
[29] W.J. Chung, J.W. Cho, T. Belytschko, A study on dynamic effects of dynamic explicit FEM in sheet metal forming analysis, in: Proceedings of the 3rd International Conference NUMISHEET’96, Dearborn, Michigan, USA, 1996, pp. 414-426; W.J. Chung, J.W. Cho, T. Belytschko, A study on dynamic effects of dynamic explicit FEM in sheet metal forming analysis, in: Proceedings of the 3rd International Conference NUMISHEET’96, Dearborn, Michigan, USA, 1996, pp. 414-426
[30] Z. Xia, A parametric study of springback behavior, in: Proceedings of the 7th International Conference on Numerical Methods in Industrial Forming Processes-NUMIFORM 2001, Toyohashi, Japan, 2001, pp. 711-716; Z. Xia, A parametric study of springback behavior, in: Proceedings of the 7th International Conference on Numerical Methods in Industrial Forming Processes-NUMIFORM 2001, Toyohashi, Japan, 2001, pp. 711-716
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.