×

The hyperoctahedral group, symmetric group representations and the moments of the real Wishart distribution. (English) Zbl 1067.60003

Let \(r\) be a positive integer, \(\Omega\) be the cone of the real symmetric positive definite \(r\times r\) matrices, \(\bar\Omega\) be the cone of the nonnegative matrices, \(e\) be the unit matrix. If \[ p\in\Lambda=\left\{{1\over 2}, {2\over 2}, \dots,{{r-1}\over 2}\right\}\cup\left({{r-1}\over 2}, \infty\right) \] and if \(\sigma\in\Omega\), then the Wishart distribution \(\gamma_{p, \sigma}\) on \(\bar\Omega\) is defined by its Laplace transform as follows: for \(-\theta\in\Omega\), the Laplace transform of \(\gamma_{p, \sigma}\) is \( \int_{\bar\Omega}\exp \text{tr}(\theta s)\gamma_{p, \sigma}(ds)=(\text{det}(e-\theta_\sigma))^{-p}. \) The authors compute all the moments of the real Wishart distribution. To do so, they use the Gelfand pair \((S_{2k}, H)\), where \(H\) is the hyperoctahedral group, \(H\)-spherical representations of the symmetric group \(S_{2k}\) and some techniques based on graphs.

MSC:

60E05 Probability distributions: general theory
60E10 Characteristic functions; other transforms
Full Text: DOI

References:

[1] Faraut, J. (1983). Analyse harmonique sur les paires de Gelfand et les espaces hyper- boliques. In Analyse Harmonique, Les Cours du CIMPA, Nice, pp. 315-446.
[5] Fulton, W. (1997). Young Tableaux, London Math. Soc. Student Texts, Vol. 35, Cambridge University Press. · Zbl 0878.14034
[12] Kates, L. K. (1980). Zonal Polynomials, Ph. D. Dissertation, Princeton University.
[13] Lu, I. L., and Richards, D. St. P. (2001). {Mac Mahon?s Master Theorem, Representation Theory and Moments of Wishart Distributions}, preprint. · Zbl 1074.62514
[14] Malliavin, M. P. (1981). Les groupes finis et leurs repr?sentations complexes, Collection Ma?trise de math?matiques pures, Masson, Paris.
[17] Takeuchi, M. (1994). Modern Spherical Functions, AMS Mathematical Monographs 135. · Zbl 0830.43002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.