×

\(\bigstar\)-autonomous lattices. (English) Zbl 1067.03066

Summary: \(\bigstar\)-autonomous lattices are the algebraic models of linear logic without exponentials and without additive constants. In this paper, we investigate the structure theory of this variety and some of its subvarieties, as well as its relationships with other classes of algebras.

MSC:

03G25 Other algebras related to logic
03B47 Substructural logics (including relevance, entailment, linear logic, Lambek calculus, BCK and BCI logics)
06B20 Varieties of lattices
06F15 Ordered groups
Full Text: DOI

References:

[1] Aglianò, P., ’An algebraic investigation of linear logic’, Rapporto Matematico 297, Università di Siena, 1996. · Zbl 0846.00022
[2] Aglianò, P., ’Ternary deduction terms in residuated structures’, Acta Scientiarum Mathematicarum Szeged 64, 3–4 (1998), 397–429.
[3] Anderson, M., and T. Feil, Lattice-Ordered Groups: An Introduction, Reidel, Dordrecht, 1988. · Zbl 0636.06008
[4] Avron, A., ’The semantics and proof theory of linear logic’, Theoretical Computer Science 57 (1988), 161–184. · Zbl 0652.03018 · doi:10.1016/0304-3975(88)90037-0
[5] Avron, A., ’Some properties of linear logic proved by semantic methods’, Journal of Logic and Computation 4 (1994), 929–938. · Zbl 0814.03006 · doi:10.1093/logcom/4.6.929
[6] Birkhoff, G., Lattice Theory, AMS, Providence, 1940.
[7] Blok, W., and D. Pigozzi, ’On the structure of varieties with equationally definable principal congruences III’, Algebra Universalis 32 (1994), 545–608. · Zbl 0817.08004 · doi:10.1007/BF01195727
[8] Blount, K., On the Structure of Residuated Lattices, PhD Dissertation, Vanderbilt University, Nashville, 1999.
[9] Blount, K., and C. Tsinakis, ’The structure of residuated lattices’, International Journal of Algebra and Computation 13, 4 (2003), 437–461. · Zbl 1048.06010 · doi:10.1142/S0218196703001511
[10] Casari, E., ’Comparative logic and Abelian -groups’, in R. Ferro et al., (eds.), Logic Colloquium ’88, North Holland, Amsterdam, 1989, pp. 161–190. · Zbl 0698.03039
[11] Chang, C.C., ’Algebraic analysis of many-valued logics’, Transactions of the AMS 93 (1958), 74–90. · Zbl 0084.00704
[12] Cignoli, R., I. M. L. D’Ottaviano, and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer, Dordrecht, 1999.
[13] Dunn, J. M., The Algebra of Intensional Logics, PhD Dissertation, Pittsburgh University, 1966. · Zbl 0145.45104
[14] Galatos, N., Selected Topics on Residuated Lattices, Qualifying paper, Vanderbilt University, Nashville, 2000.
[15] Galatos, N., Varieties of Residuated Lattices, PhD thesis, Vanderbilt University, Nashville, 2003. · Zbl 1082.06011
[16] Girard, J.-Y., ’Linear logic’, Theoretical Computer Science 50 (1987), 1–102. · Zbl 0625.03037 · doi:10.1016/0304-3975(87)90045-4
[17] Grishin V.N., ’Predicate and set-theoretic calculi based on logics without contraction’, Math. URSS Izvestija 18 (1982), 41–59. · Zbl 0478.03009 · doi:10.1070/IM1982v018n01ABEH001382
[18] Hart, J.B., L. Rafter, and C. Tsinakis, ’The structure of commutative residuated lattices’, International Journal of Algebra and Computation 12, 4 (2002), 509–524. · Zbl 1011.06006 · doi:10.1142/S0218196702001048
[19] Idziak, P. M., ’Lattice operations in BCK algebras’, Mathematica Japonica 29, 6 (1984), 839–846. · Zbl 0555.03030
[20] Jipsen, P., and C. Tsinakis, ’A survey of residuated lattices’, in J. Martinez (ed.), Ordered Algebraic Structures, Kluwer, Dordrecht, 2002, pp. 19–56. · Zbl 1070.06005
[21] Kowalski, T., and H. Ono, Residuated Lattices, JAIST Reports, Ishikawa, 2001.
[22] Paoli, F., ’On the algebraic structure of linear, relevance, and fuzzy logics’, Archive for Mathematical Logic 41 (2002), 107–121. · Zbl 1022.03048 · doi:10.1007/s001530100098
[23] Paoli, F., Substructural Logics: A Primer, Kluwer, Dordrecht, 2002. · Zbl 1025.03002
[24] Paoli, F., ’A really fuzzy approach to the sorites paradox’, Synthese 134, 3 (2003), 363–387. · Zbl 1030.03006 · doi:10.1023/A:1022995202767
[25] Rosenthal, K., Quantales and Their Applications, Longman Scientific, Essex. · Zbl 0703.06007
[26] Ursini, A., and P. Aglianò, ’Ideals and other generalizations of congruence classes’, Journal of the Australian Mathematical Society A, 53 (1992), 103–115. · Zbl 0780.08001 · doi:10.1017/S1446788700035436
[27] Yetter, D. N., ’Quantales and (noncommutative) linear logic’, Journal of Symbolic Logic 55 (1990), 41–64. · Zbl 0701.03026 · doi:10.2307/2274953
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.