×

Generalized vector equilibrium problems with trifunctions. (English) Zbl 1066.90112

Summary: In this paper, we study the existence of strong and weak solutions of the generalized vector equilibrium problems for trifunctions. Two special classes of vector-valued trifunctions are introdcued, called the classes of (SPM) and (GPM), respectively. Some existence results for strong solutions associated to functions of these classes are given.

MSC:

90C29 Multi-objective and goal programming
91A40 Other game-theoretic models
Full Text: DOI

References:

[1] Aliprantis, C.D. and Border, K.C. (1994), Infinite Dimensional Analysis, Springer, New York. · Zbl 0839.46001
[2] Ansari, Q.H. (1997), Extented generalized vector variational-like inequalities for nonmonotone multi-valued maps, Annales des Sciences Mathématiques du Québec, 21, 1-11. · Zbl 0894.49006
[3] Ansari, Q.H. and Yao, J.C. (1999a), An existence result for the generalized vector equilibrium problem, Applied Mathematics Letters 12, 53-56. · Zbl 1014.49008 · doi:10.1016/S0893-9659(99)00121-4
[4] Ansari, Q.H. and Yao, J.C. (1999b), On strong solutions of the generalized implicit vector variational inequality problem, Advanced Nonlinear Variational Inequalities 2, 1-10. · Zbl 1007.49511
[5] Ansari, Q.H., Yang X.Q. and Yao, J.C. (2001), Existence and duality of implicit vector variational problems, Numerical Functional Analysis and Optimization, 22(7&8), 815-829. · Zbl 1039.49003 · doi:10.1081/NFA-100108310
[6] Aubin, J.P. (1982), Mathematical Methods of Game and Economic Theory, North-Holland, Amsterdam.
[7] Berge, C. (1963), Topological Spaces, including a treatment of Multi-Valued Functions, Vector Spaces and Convexity (Translated by E.M. Patterson), Oliver and Boyd Ltd. · Zbl 0114.38602
[8] Bianchi, M. and Schaible, S. (1996), Generalized monotone bifunctions and equilibrium problems, Journal of Optimization Theory and Applications 90, 31-43. · Zbl 0903.49006 · doi:10.1007/BF02192244
[9] Blum, E. and Oettli, W. (1994), From optimization and variational inequalities to equilibrium problems, The Mathematics Student 63, 123-145. · Zbl 0888.49007
[10] Bourbaki, N. (1996), Espaces vectoriels topologiques, Hermann, Paris. · Zbl 0042.35302
[11] Brézis, H. (1968), Equations et inequations non linéaires dans les espaces vectoriels en dualité, Annales de l’Institut Fourier, 18, 115-175. · Zbl 0169.18602
[12] Browder, F. (1976), Nonlinear operators and nonlinear equations of evolution in banach spaces, Proc. Symp. Pure Mathematics 18, Part 2 (the entire issue). American Mathematical Society, Providence, RI, (preprint version 1968). · Zbl 0167.15205
[13] Chadli, O., Chbani, Z. and Riahi, H. (2000), Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities, Journal of Optimization Theory and Applications 105, 299-323. · Zbl 0966.91049 · doi:10.1023/A:1004657817758
[14] Chadli, O., Chiang, Y. and Huang, S. (2002), Topological pseudomonotonicity and vector equilibrium problems, Journal of Mathematical Analysis and Applications, 270, 435-450. · Zbl 1007.90077 · doi:10.1016/S0022-247X(02)00079-3
[15] Chen, G.Y. and Craven, B.D. (1990), A vector variational inequality and optimization over an efficient set, ZOR-Meth. Models Operation Research 3, 1-12. · Zbl 0693.90091 · doi:10.1007/BF01415945
[16] Cubiotti, P. and Yao, J.C. (1997), Necessary and sufficient conditions for the existence of the implicit variational inequality problem, Applied Mathematics Letters 10, no.(1) 83-87. · Zbl 0897.49005 · doi:10.1016/S0893-9659(96)00116-4
[17] Fan, K. (1961), A generalization of Tychonoff ’s fixed-point theorem, Mathematische Annalen 142, 305-310. · Zbl 0093.36701 · doi:10.1007/BF01353421
[18] Fu, J.Y. (2000), Generalized vector quasi-equilibrium problems, Mathematical Methods of Operations Research 52, 57-64. · Zbl 1054.90068 · doi:10.1007/s001860000058
[19] Hadjisavvas, N. and Schaible, S. (1996), Quasimonotone variational inequalities in Banach spaces, Journal of Optimization Theory and Application 90, 55-111. · Zbl 0904.49005 · doi:10.1007/BF02192248
[20] Hadjisavvas, N. and Schaible, S. (1998), From scalar to vector equilibrium problems in the quasimonotone case, Journal of Optimization Theory and Application 96, 297-309. · Zbl 0903.90141 · doi:10.1023/A:1022666014055
[21] Holmes, R.B. (1975), Geometric Functional Analysis and its Applications, Springer, New York. · Zbl 0336.46001
[22] Konnov, I.V. and Yao, J.C. (1997), On the generalized vector variational inequality problem, Journal of Mathematical Analysis and Applications 206, 42-58. · Zbl 0878.49006 · doi:10.1006/jmaa.1997.5192
[23] Lee, B.S., Lee, G.M. and Kim, D.S. (1997), Generalized vector variational-like inequalities in locally convex Hausdorff topological vector spaces, Indian Journal of Pure and Applied Mathematics 28, 33-41. · Zbl 0899.49005
[24] Lin, K.L., Yang, D.P. and Yao, J.C. (1997), Generalized vector variational inequalities, Journal of Optimization Theory and Applications 92, pp. 117-125. · Zbl 0886.90157 · doi:10.1023/A:1022640130410
[25] Luc, D.T. (1989), Theory of Vector Optimization, Springer, Berlin. · Zbl 0688.90051
[26] Munkres, J.R. (2000), Topology, 2nd ed., Prentice Hall, NJ. · Zbl 0951.54001
[27] Oettli, W. (1997), A remark on vector-valued equilibria and generalized monotonicity, Acta Mathematica Vietnamica 22, 213-221. · Zbl 0914.90235
[28] Shioji, N. (1991), A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proceedings of American Mathematical Society 111, 187-195. · Zbl 0768.47028 · doi:10.1090/S0002-9939-1991-1045601-X
[29] Tanaka, T. (1997), Generalized semicontinuity and existence theorems for cone saddle points, Applied Mathematics and Optimization 36, 313-322. · Zbl 0894.90132 · doi:10.1007/s002459900065
[30] Yao, J.C. (1991), The generalized quasi-variational inequality problem with applications, Journal of Mathematical Analysis and Applications 158, 139-160. · Zbl 0739.49010 · doi:10.1016/0022-247X(91)90273-3
[31] Zeidler, E. (1985), Nonlinear Functional Analysis and its Applications, Vol II/B, Nonlinear Monotone Operators, Springer-Verlag, New York. · Zbl 0583.47051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.