×

Convergence of string-averaging projection schemes for inconsistent convex feasibility problems. (English) Zbl 1065.65074

Summary: We study iterative projection algorithms for the convex feasibility problem of finding a point in the intersection of finitely many nonempty, closed and convex subsets in the Euclidean space. We propose (without proof) an algorithmic scheme which generalizes both the string-averaging algorithm and the block-iterative projections method with fixed blocks and prove convergence of the string-averaging method in the inconsistent case by translating it into a fully sequential algorithm in the product space.

MSC:

65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
Full Text: DOI

References:

[1] DOI: 10.1016/0024-3795(89)90375-3 · Zbl 0679.65046 · doi:10.1016/0024-3795(89)90375-3
[2] Aharoni R., Journal of Mathematical Analysis and Applications 103 pp 134– (1984) · Zbl 0564.65034 · doi:10.1016/0022-247X(84)90163-X
[3] DOI: 10.1137/S0036144593251710 · Zbl 0865.47039 · doi:10.1137/S0036144593251710
[4] Bauschke H.H., Contemporary Mathematics 204, in: Recent Developments in Optimization Theory and Nonlinear Analysis pp 1– (1997) · doi:10.1090/conm/204/02620
[5] Bauschke H.H., Projection and proximal point methods: Convergence results and counterexamples (2003)
[6] Bregman L.M., Soviet Mathematics Doklady 6 pp 688– (1965)
[7] Brezinski C., Projection Methods for Systems of Equations (1997) · Zbl 0889.65023
[8] Browder, F.E. Nonexpansive nonlinear operators in a Banach space. Proceedings of the National Academy of Science (USA). Vol. 54, pp.1041–1044. · Zbl 0128.35801
[9] Browder F.E., Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces (1967) · Zbl 0176.45301
[10] DOI: 10.1090/S0002-9904-1966-11544-6 · Zbl 0138.08202 · doi:10.1090/S0002-9904-1966-11544-6
[11] Butnariu D., Inherently Parallel Algorithms in Feasibility and Optimization and their Applications (2001) · Zbl 0971.00058
[12] Censor Y., Inherently Parallel Algorithms in Feasibility and Optimization and their Applications pp 101– (2001)
[13] Censor Y., Parallel Optimization: Theory, Algorithms, and Applications (1997) · Zbl 0945.90064
[14] DOI: 10.1090/S0002-9939-1959-0105008-8 · doi:10.1090/S0002-9939-1959-0105008-8
[15] DOI: 10.1109/78.330356 · doi:10.1109/78.330356
[16] Crombez G., Journal of Nonlinear and Convex Analysis 3 pp 345– (2002) · Zbl 1039.47044
[17] Goebel K., Uniform Convexity Hyperbolic Geometry, and Nonexpansive Mappings (1984) · Zbl 0537.46001
[18] DOI: 10.1016/0041-5553(67)90113-9 · Zbl 0199.51002 · doi:10.1016/0041-5553(67)90113-9
[19] Meshulam R., Discrete Mathematics 154 pp 307– (1996) · Zbl 0860.65041 · doi:10.1016/0012-365X(95)00055-2
[20] Ortega J.M., Iterative Solution of Nonlinear Equations in Several Variables (1971)
[21] DOI: 10.1007/BF02612715 · Zbl 0523.49022 · doi:10.1007/BF02612715
[22] DOI: 10.1080/03081088308817526 · Zbl 0523.47040 · doi:10.1080/03081088308817526
[23] Rhee H., Journal of the Korea Society of Mathematical Education. Series B: The Pure and Applied Mathematics 10 pp 49– (2003)
[24] Stark H., Vector Space Projections: A Numerical Approach to Signal and Image Processing. Neutral Nets, and Optics (1998) · Zbl 0903.65001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.