×

Radial basis functions and corresponding zonal series expansions on the sphere. (English) Zbl 1063.42017

Summary: Since radial positive definite functions on \(\mathbb R^d\) remain positive definite when restricted to the sphere, it is natural to ask for properties of the zonal series expansion of such functions which relate to properties of the Fourier-Bessel transform of the radial function. We show that the decay of the Gegenbauer coefficients is determined by the behavior of the Fourier-Bessel transform at the origin.

MSC:

42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
42A82 Positive definite functions in one variable harmonic analysis
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Andrews, G. E.; Askey, R.; Roy, R., Special Functions (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0920.33001
[2] Ball, J. M., Differentiability properties of symmetric and isotropic functions, Duke Math. J., 51, 699-728 (1984) · Zbl 0566.73001
[3] Buhmann, M., Radial Basis Functions, Cambridge Monographs on Applied and Computational Mathematics (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1038.41001
[4] Crum, M. M., On positive-definite functions, Proc. London Math. Soc., 6, 3, 548-560 (1956) · Zbl 0073.04004
[5] Doha, E. H., The coefficients of differentiated expansions and derivatives of ultraspherical polynomials, Comput. Math. Appl., 21, 2-3, 115-122 (1991) · Zbl 0723.33008
[6] M. Flensted-Jensen, T. Koornwinder, Positive definite spherical functions on a non-compact, rank one symmetric space, in: P. Eymard, J. Faraut, G. Schiffmann, R. Takahashi (Eds.), Analyse Harmonique sur les Groupes de Lie II, Séminaire Nancy-Strasbourg 1976-1978, Lecture Notes in Mathematics, vol. 739, Springer, Berlin, 1979, pp. 249-282.; M. Flensted-Jensen, T. Koornwinder, Positive definite spherical functions on a non-compact, rank one symmetric space, in: P. Eymard, J. Faraut, G. Schiffmann, R. Takahashi (Eds.), Analyse Harmonique sur les Groupes de Lie II, Séminaire Nancy-Strasbourg 1976-1978, Lecture Notes in Mathematics, vol. 739, Springer, Berlin, 1979, pp. 249-282. · Zbl 0433.43014
[7] Freeden, W.; Gervens, T.; Schreiner, M., Constructive Approximation on the Sphere (1998), Clarendon Press: Clarendon Press Oxford · Zbl 0896.65092
[8] I.M. Gelf’and, N.Ya. Vilenkin, Generalized Functions, vol. 4, Academic Press, New York, 1964.; I.M. Gelf’and, N.Ya. Vilenkin, Generalized Functions, vol. 4, Academic Press, New York, 1964. · Zbl 0136.11201
[9] Guo, K.; Hu, S.; Sun, X., Conditionally positive definite functions and Laplace-Stieltjes integrals, J. Approx. Theory, 74, 249-265 (1993) · Zbl 0832.42005
[10] Helgason, S., Groups and Geometric Analysis (2000), Reprinted by the American Mathematical Society: Reprinted by the American Mathematical Society Providence, RI · Zbl 0965.43007
[11] S. Hubbert, B. Baxter, Radial basis functions for the sphere, in: W. Haussmann, K. Jetter, M. Reimer (Eds.), Recent Progress in Multivariate Approximation, Proceedings of the Fourth International Conference, Witten-Bommerholz, Germany, International Series of Numerical Mathematics, vol. 137, Birkhäuser, Basel, 2001, pp. 33-47.; S. Hubbert, B. Baxter, Radial basis functions for the sphere, in: W. Haussmann, K. Jetter, M. Reimer (Eds.), Recent Progress in Multivariate Approximation, Proceedings of the Fourth International Conference, Witten-Bommerholz, Germany, International Series of Numerical Mathematics, vol. 137, Birkhäuser, Basel, 2001, pp. 33-47. · Zbl 1035.41012
[12] J. Levesley, S. Hubbert, Open problem concerning Fourier transforms of radial functions in Euclidean space and on spheres, in: W. Haussmann, K. Jetter, M. Reimer (Eds.), Recent Progress in Multivariate Approximation, Proceedings of the Fourth International Conference, Witten-Bommerholz, Germany, International Series of Numerical Mathematics, vol. 137, Birkhäuser, Basel, 2001, pp. 225-226.; J. Levesley, S. Hubbert, Open problem concerning Fourier transforms of radial functions in Euclidean space and on spheres, in: W. Haussmann, K. Jetter, M. Reimer (Eds.), Recent Progress in Multivariate Approximation, Proceedings of the Fourth International Conference, Witten-Bommerholz, Germany, International Series of Numerical Mathematics, vol. 137, Birkhäuser, Basel, 2001, pp. 225-226. · Zbl 1004.33500
[13] Matheron, G., The intrinsic random functions and their applications, Adv. Appl. Probab., 5, 439-468 (1973) · Zbl 0324.60036
[14] Micchelli, C. A., Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx., 1, 11-22 (1986) · Zbl 0625.41005
[15] C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, vol. 17, Springer, Berlin, 1966.; C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, vol. 17, Springer, Berlin, 1966. · Zbl 0138.05101
[16] Narcowich, F. J.; Ward, J. D., Scattered data interpolation on spheres: error estimates and locally supported basis functions, SIAM J. Math. Anal., 33, 6, 1393-1410 (2002) · Zbl 1055.41007
[17] Schoenberg, I. J., Metric spaces and completely monotone functions, Ann. Math., 39, 811-841 (1938) · Zbl 0019.41503
[18] Schoenberg, I. J., Positive definite functions on spheres, Duke Math. J., 9, 96-108 (1942) · Zbl 0063.06808
[19] Wackernagel, H., Multivariate Geostatistics (2003), Springer: Springer Berlin · Zbl 1015.62128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.