×

Saddle-point behavior for monotone semiflows and reaction-diffusion models. (English) Zbl 1063.35083

This paper generalizes and unifies work done by H. L. Smith and H. R. Thieme [J. Differ. Equations 176, No. 1, 195–222 (2001; Zbl 1064.47075)] on some Lotka-Volterra systems and V. Capasso and R. E. Wilson [SIAM J. Appl. Math. 57, No. 2, 327–346 (1997; Zbl 0872.35053)] on some epidemic models about the existence of a saddle-point structure in competitive systems.

MSC:

35K57 Reaction-diffusion equations
37C65 Monotone flows as dynamical systems
47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Các, N. P.; Gatica, J. A., Fixed point theorems for mappings in ordered Banach spaces, J. Math. Anal. Appl., 71, 547-557 (1979) · Zbl 0448.47035
[2] Capasso, V., Mathematical Structures of Epidemic Systems, Lecture Notes in Biomathematics, Vol. 97 (1993), Springer: Springer Heidelberg · Zbl 0798.92024
[3] Capasso, V.; Kunish, K., A reaction-diffusion system arising in modelling man-environment diseases, Quart. Appl. Math., 46, 431-450 (1988) · Zbl 0704.35069
[4] Capasso, V.; Maddalena, L., Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 13, 173-184 (1981) · Zbl 0468.92016
[5] Capasso, V.; Maddalena, L., Saddle point behavior for a reaction-diffusion systemapplication to a class of epidemic models, Math. Comput. Simulation, 24, 540-547 (1982) · Zbl 0502.92018
[6] Capasso, V.; Wilson, R. E., Analysis of a reaction-diffusion system modelling man-environment-man epidemics, SIAM J. Appl. Math., 57, 327-346 (1997) · Zbl 0872.35053
[7] Dancer, E. N.; Guo, Z. M., Uniqueness and stability for solutions of competing species equations with large interactions, Comm. Appl. Nonlinear Anal., 1, 19-45 (1994) · Zbl 0935.35074
[8] Dancer, E. N.; Hess, P., Stability of fixed points for order-preserving discrete-time dynamical systems, J. Reine Angew. Math., 419, 125-139 (1991) · Zbl 0728.58018
[9] Dancer, E. N.; Zhang, Z., Dynamics of Lotka-Volterra competition systems with large interaction, J. Differential Equations, 182, 470-489 (2002) · Zbl 1006.35047
[10] Deimling, K., Nonlinear Functional Analysis (1988), Springer: Springer Berlin
[11] Diekmann, O.; Heesterbeek, J. A.R, Mathematical Epidemiology of Infectious Diseases (2000), Wiley: Wiley Chichester, New York · Zbl 0997.92505
[12] Hale, J. K., Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, Vol. 25 (1988), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0642.58013
[13] P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics, Series 247, Longman Scientific and Technical, New York, 1991.; P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics, Series 247, Longman Scientific and Technical, New York, 1991. · Zbl 0731.35050
[14] Hirsch, M., Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383, 1-53 (1988) · Zbl 0624.58017
[15] Hirsch, M., Systems of differential equations which are competitive or cooperativeIII, Competing species, Nonlinearity, 1, 51-71 (1988) · Zbl 0658.34024
[16] Ida, M.; Muramatsu, T.; Ninomiya, H., Diffusion-induced extinction of a superior species in a competition system, Japan J. Indust. Appl. Math., 15, 233-252 (1998) · Zbl 0909.92029
[17] Kishimoto, K.; Weinberger, H., The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential Equations, 58, 15-21 (1985) · Zbl 0599.35080
[18] Lajmanovich, A.; Yorke, J. A., A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28, 221-236 (1976) · Zbl 0344.92016
[19] Liang, X.; Jiang, J., On the finite-dimensional dynamical systems with limited competition, Trans. Amer. Math. Soc., 354, 3535-3554 (2002) · Zbl 1012.34046
[20] Liang, X.; Jiang, J., The dynamical behavior of type-K competitive Kolmogorov systems and its application to 3-dimensional type-K competitive Lotka-Volterra systems, Nonlinearity, 16, 785-801 (2003) · Zbl 1042.34067
[21] Martin, R. H.; Smith, H. L., Abstract functional-differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321, 1-44 (1990) · Zbl 0722.35046
[22] Mirenghi, E., Equilibrium solutions of a semilinear reaction-diffusion system, Nonlinear Anal., 11, 393-405 (1987) · Zbl 0661.35041
[23] R.D. Nussbaum, Eigenvectors of nonlinear positive operator and the linear Krein-Rutman theorem, in: E. Fadell, G. Fournier (Eds.), Fixed Point Theory, Lecture Notes in Mathematics, Vol. 886, Springer, New York/Berlin, 1981, pp. 309-331.; R.D. Nussbaum, Eigenvectors of nonlinear positive operator and the linear Krein-Rutman theorem, in: E. Fadell, G. Fournier (Eds.), Fixed Point Theory, Lecture Notes in Mathematics, Vol. 886, Springer, New York/Berlin, 1981, pp. 309-331.
[24] Selgrade, J. F., Asymptotic behavior of solutions to single loop positive feedback systems, J. Differential Equations, 38, 80-103 (1980) · Zbl 0419.34054
[25] Shub, M., Global Stability of Dynamical Systems (1987), Springer: Springer New-York/Berlin · Zbl 0606.58003
[26] Smith, H. L., Cooperative systems of differential equations with concave nonlinearities, Nonlinear Anal., 10, 1037-1052 (1986) · Zbl 0612.34035
[27] Smith, H. L., Competing subcommunities of mutualists and a generalized Kamke theorem, SIAM J. Appl. Math., 46, 856-874 (1986) · Zbl 0609.92033
[28] Smith, H. L., Periodic solutions of periodic competitive and cooperative systems, SIAM J. Math. Anal., 17, 1289-1318 (1986) · Zbl 0609.34048
[29] Smith, H. L., Periodic competitive differential equations and the discrete dynamics of competitive maps, J. Differential Equations, 64, 165-194 (1986) · Zbl 0596.34013
[30] Smith, H. L., Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, Vol. 41 (1995), AMS: AMS Providence, RI · Zbl 0821.34003
[31] Smith, H. L., Planar competitive and cooperative difference equations, J. Differential Equations Appl., 3, 335-357 (1998) · Zbl 0907.39004
[32] Smith, H. L.; Thieme, H. R., Convergence for strongly order-preserving semiflows, SIAM J. Math. Anal., 22, 1081-1101 (1991) · Zbl 0739.34040
[33] Smith, H. L.; Thieme, H. R., Stable coexistence and bi-stability for competitive systems on ordered Banach spaces, J. Differential Equations, 176, 195-222 (2001) · Zbl 1064.47075
[34] Smoller. A. Wasserman, J., Global bifurcation of steady state solutions, J. Differential Equations, 39, 269-290 (1981) · Zbl 0425.34028
[35] Takác̆, P., Asymptotic behavior of discrete-time semigroups of sublinear, strongly increasing mappings with applications in biology, Nonlinear Anal., 14, 35-42 (1990) · Zbl 0695.47053
[36] Takác̆, P., Domains of attraction of generic \(ω\)-limit sets for strongly monotone semiflows, Z. Anal. Anwendungen, 10, 275-317 (1991) · Zbl 0764.58019
[37] Takác̆, P., Domains of attraction of generic \(ω\)-limit sets for strongly monotone discrete-time semigroups, J. Reine Angew. Math., 423, 101-173 (1992) · Zbl 0729.54022
[38] Takác̆, P., Discrete monotone dynamics and time-periodic competition between two species, Differential Integral Equations, 10, 547-576 (1997) · Zbl 0890.35012
[39] I. Ters̆c̆ák, Dynamics of \(C^1\); I. Ters̆c̆ák, Dynamics of \(C^1\)
[40] Wang, Y.; Jiang, J., Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems, J. Differential Equations, 186, 611-632 (2002) · Zbl 1026.37016
[41] Zhao, X.-Q, Global attractivity and stability in some monotone discrete dynamical systems, Bull. Austral. Math. Soc., 53, 305-324 (1996) · Zbl 0847.34055
[42] Zhao, X.-Q, Dynamical Systems in Population Biology (2003), Springer: Springer New York · Zbl 1023.37047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.