×

A theta function identity and its implications. (English) Zbl 1063.11011

The Jacobi theta function \(\theta_1(z|\tau)\) is defined by \[ \theta_1(z|\tau)=2q^{1/8}\sum_{n=0}^\infty (-1)^nq^{n(n+1)/2}\sin(2n+1)z. \] In this very interesting article, the author proves a general identity satisfied by \(\theta_1(z|\tau)\), namely, \[ \begin{split} (f(z)-f(-z))\theta_1(x|\tau)\theta_1(y|\tau)\theta_1(x+y|\tau)\theta_1(x-y|\tau)= \\ (f(y)-f(-y))\theta_1(x|\tau)\theta_1(z|\tau)\theta_1(x+z|\tau)\theta_1(x-z|\tau) \\ - (f(x)-f(-x))\theta_1(y|\tau)\theta_1(z|\tau)\theta_1(y+z|\tau)\theta_1(y-z|\tau),\end{split} \] where \(f(z)\) is an entire function satisfying the relations \[ f(z+\pi) = -f(z) \quad\text{and}\quad f(z+\pi\tau) = -q^{-3/2}e^{-6iz}f(z). \]
At first sight, the above identity appears to be “intimidating” and “useless” but the author is able to obtain very interesting consequences from it.
He shows that \[ \theta_1^3\left(x+\frac{\pi}{3}|\tau\right)+\theta_1^3\left(x-\frac{\pi}{3}|\tau\right)- \theta_1^3\left(x|\tau\right)= 3a(q)\theta_1({3x}|{3}\tau), \] where \[ a(q) = 1+6\sum_{n=0}^\infty \left(\frac{q^{3n+1}}{1-q^{3n+1}}-\frac{q^{3n+2}}{1-q^{3n+2}}\right). \]
He also derives his original proof of the identity \[ \begin{split} 32\prod_{n=1}^\infty (1-q^n)^{10} = \sum_{ \mu,\nu\in\mathbb Z} (-1)^{\mu+\nu}q^{3\mu(\mu+1)/2+\nu(\nu+1)/6}\\ \times \left(9(2\mu+1)^3(2\nu+1)-(2\mu+1)(2\nu+1)^3\right).\end{split}\tag{1} \] For other proofs of (1), see the paper by B. C. Berndt, S. H. Chan, Z.-G. Liu and H. Yesilyurt [Q. J. Math. 55, 13–30 (2004; Zbl 1060.11063)].
Finally, he gives new proofs of identities satisfied by the Hirschhorn-Garvan-Borwein two variables cubic theta functions.
In conclusion, this is an interesting paper and I highly recommend it to those who are interested in Jacobi’s theta functions.

MSC:

11F27 Theta series; Weil representation; theta correspondences
33E05 Elliptic functions and integrals
11F11 Holomorphic modular forms of integral weight
11F12 Automorphic forms, one variable

Citations:

Zbl 1060.11063
Full Text: DOI

References:

[1] George E. Andrews, The theory of partitions, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2. · Zbl 0371.10001
[2] Bruce C. Berndt, Ramanujan’s notebooks. Part III, Springer-Verlag, New York, 1991. · Zbl 0733.11001
[3] Bruce C. Berndt, Ramanujan’s notebooks. Part IV, Springer-Verlag, New York, 1994. · Zbl 0785.11001
[4] Bruce C. Berndt, On a certain theta-function in a letter of Ramanujan from Fitzroy House, Ganita 43 (1992), no. 1-2, 33 – 43. · Zbl 0839.11047
[5] Bruce C. Berndt, Song Heng Chan, Zhi-Guo Liu, and Hamza Yesilyurt, A new identity for (\?;\?)\textonesuperior \(^{0}\)_{\infty } with an application to Ramanujan’s partition congruence modulo 11, Q. J. Math. 55 (2004), no. 1, 13 – 30. · Zbl 1060.11063 · doi:10.1093/qjmath/55.1.13
[6] K. Chandrasekharan, Elliptic functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281, Springer-Verlag, Berlin, 1985. · Zbl 0575.33001
[7] M. D. Hirschhorn, A simple proof of an identity of Ramanujan, J. Austral. Math. Soc. Ser. A 34 (1983), no. 1, 31 – 35. · Zbl 0501.10012
[8] Michael Hirschhorn, Frank Garvan, and Jon Borwein, Cubic analogues of the Jacobian theta function \?(\?,\?), Canad. J. Math. 45 (1993), no. 4, 673 – 694. · Zbl 0797.33012 · doi:10.4153/CJM-1993-038-2
[9] Zhi-Guo Liu, The Borweins’ cubic theta function identity and some cubic modular identities of Ramanujan, Ramanujan J. 4 (2000), no. 1, 43 – 50. · Zbl 1012.11033 · doi:10.1023/A:1009825922114
[10] Sarachai Kongsiriwong and Zhi-Guo Liu, Uniform proofs of \?-series-product identities, Results Math. 44 (2003), no. 3-4, 312 – 339. · Zbl 1053.11015 · doi:10.1007/BF03322989
[11] Zhi-Guo Liu, On certain identities of Ramanujan, J. Number Theory 83 (2000), no. 1, 59 – 75. · Zbl 0981.11016 · doi:10.1006/jnth.2000.2513
[12] Zhi-Guo Liu, Some Eisenstein series identities, J. Number Theory 85 (2000), no. 2, 231 – 252. · Zbl 0973.11053 · doi:10.1006/jnth.2000.2543
[13] Zhi-Guo Liu, Some theta functions identities associated with the modular equations of degree 5, Integers 1 (2001), A3, 14. · Zbl 0997.11038
[14] Zhi-Guo Liu, Residue theorem and theta function identities, Ramanujan J. 5 (2001), no. 2, 129 – 151. · Zbl 1011.11025 · doi:10.1023/A:1011427622187
[15] Zhi-Guo Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), no. 1, 103 – 130. · Zbl 1050.11048 · doi:10.2140/pjm.2003.209.103
[16] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. · JFM 53.0180.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.