×

The Green-Kubo formula and power spectrum of reversible Markov processes. (English) Zbl 1062.82042

Summary: As is known, the entropy production rate of a stationary Markov process vanishes if and only if the process is reversible. In this paper, we discuss the reversibility of a stationary Markov process from a functional analysis point of view. It is shown that the process is reversible if and only if it has a symmetric Markov semigroup, equivalently, a self-adjoint infinitesimal generator. Applying this fact, we prove that the Green–Kubo formula holds for reversible Markov processes. By demonstrating that the power spectrum of each reversible Markov process is Lorentz-typed, we show that it is impossible for stochastic resonance to occur in systems with zero entropy production.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60J25 Continuous-time Markov processes on general state spaces
Full Text: DOI

References:

[1] Benzi, Tellus 34 pp 10– (1982)
[2] Benzi, J. Phys. A 14 pp L453– (1981)
[3] Callen, Phys. Rev. 83 pp 34– (1951)
[4] de Groot, S.R., and Mazur, P.,Noneqilibrium Thermodynamics(North-Holland, Amsterdam, 1962).
[5] Ditzinger, Phys. Rev. E 50 pp 3508– (1994)
[6] Fang, H.T., and Gong, G.L., ”Einstein’s formula for stationary diffusion on Riemannian manifolds,”Dirichlet Forms and Stochastic Processes, Proceedings of the International Conference, Beijing, China, October 25–31, 1993, edited by Z.M. Ma, M. Röckner, and J.A. Yan (Walter de Gruyter, New York, 1995).
[7] Forster, D.,Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions(Benjamin/Cummings, Reading, MA, 1975).
[8] Fox, Phys. Rev. E 48 pp 3390– (1993)
[9] Gallavotti, J. Stat. Phys. 80 pp 931– (1995)
[10] Graham, Z. Phys. B 26 pp 397– (1977)
[11] Green, J. Chem. Phys. 19 pp 1036– (1951)
[12] Green, J. Chem. Phys. 20 pp 1281– (1952)
[13] Green, J. Chem. Phys. 22 pp 398– (1954)
[14] Hasegawa, Prog. Theor. Phys. 55 pp 90– (1976)
[15] Hasegawa, Prog. Theor. Phys. 56 pp 44– (1976)
[16] Prog. Theor. Phys. 57 pp 1523– (1977)
[17] Prog. Theor. Phys. 58 pp 128– (1977)
[18] Kubo, J. Phys. Soc. Jpn. 12 pp 570– (1957)
[19] Kubo, Rep. Prog. Phys. 29 pp 255– (1966)
[20] Kubo, R., Toda, M., and Hashitsume, N.,Statistical Physics II, Nonequilibrium Statistical Mechanics, 2nd ed. (Springer, Berlin, 1991). · Zbl 0757.60109
[21] Lovesey, S.W.,Condensed Matter Physics: Dynamic Correlations, 2nd ed. (Benjamin/Cummings, Menlo Park, CA, 1986).
[22] Maes, J. Math. Phys. 41 pp 1528– (2000)
[23] Maes, Markov Proc. Rel. Fields 7 pp 119– (2001)
[24] Mori, Prog. Theor. Phys. 33 pp 423– (1965)
[25] Nicolis, G., and Prigogine, I.,Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations(Wiley, New York, 1977). · Zbl 0363.93005
[26] Qian, Sci. Sin., Ser. A XXXI pp 1182– (1988)
[27] Qian, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 59 pp 203– (1982)
[28] Qian, Sci. Sin., Ser. A 27 pp 470– (1984)
[29] Qian, M.P., and Qian, M., ”The entropy production and reversibility of Markov processes,”Probability Theory and Applications, Vol. 1, edited by Yu. A. Prohorov and V. V. Sazonov, Proceedings of the First World Congress of the Bernoulli Society, Tashkent, USSR 1986, pp. 307–316 (VNU Science Press, Utrecht, The Netherlands, 1987).
[30] Qian, Contemp. Math. 118 pp 255– (1991) · doi:10.1090/conm/118/1137974
[31] Qian, J. Stat. Phys. 107 pp 1129– (2002)
[32] Qian, M., Qian, M.P., and Zhang, F.X., ”Ergodicity and reversibility of stationary minimal diffusion processes,” Ann. Probab. (submitted).
[33] Qian, Phys. Lett. A 309 pp 371– (2003)
[34] Qian, M., and Zhang, F.X., ”Entropy production rate of the minimal diffusion process,” Stochastic Proc. Appl. (submitted). · Zbl 1125.60086
[35] Qian, Phys. Rev. E 62 pp 6469– (2000)
[36] Qian, Commun. Math. Phys. 206 pp 429– (1999)
[37] Ruelle, J. Stat. Phys. 95 pp 393– (1999)
[38] Schnakenberg, Rev. Mod. Phys. 48 pp 571– (1976)
[39] Shibata, Physica A 309 pp 268– (2002)
[40] Takahasi, J. Phys. Soc. Jpn. 7 pp 439– (1952)
[41] Varadhan, S.R.S.,Large Deviations and Applications(SIAM, Philadelphia, 1984). · Zbl 0549.60023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.