×

Zero-cycles on varieties over finite fields. (English) Zbl 1062.14013

Summary: We prove that for a smooth projective variety \(X\) of dimension \(d\) defined over a finite field \(k\), the structure map \(\sigma: X \to\text{Spec}\;k\) induces an isomorphism \(\sigma_* : \text{CH}^{d+1}(X,1) \cong \text{CH}^1(k, 1) = k^*\). We also prove that the higher Chow groups \(\text{CH}^{d+s-1}(X,s)\) of one-dimensional cycles are torsion for \(s \geq 2\).

MSC:

14C25 Algebraic cycles
11G25 Varieties over finite and local fields
14C15 (Equivariant) Chow groups and rings; motives
14G15 Finite ground fields in algebraic geometry
19E08 \(K\)-theory of schemes
Full Text: DOI

References:

[1] DOI: 10.1007/BFb0073717 · doi:10.1007/BFb0073717
[2] Bloch S., Compositio Math. 39 pp 107– (1979)
[3] Bloch S., Duke University Mathematics Series IV, in: Lectures on Algebraic Cycles (1980) · Zbl 0436.14003
[4] DOI: 10.1016/0001-8708(86)90081-2 · Zbl 0608.14004 · doi:10.1016/0001-8708(86)90081-2
[5] DOI: 10.1007/978-3-662-02421-8 · doi:10.1007/978-3-662-02421-8
[6] DOI: 10.1007/s002220050014 · Zbl 0957.19003 · doi:10.1007/s002220050014
[7] DOI: 10.1215/S0012-7094-88-05726-2 · Zbl 0697.14005 · doi:10.1215/S0012-7094-88-05726-2
[8] Kahn B., C. R. Acad. Sci. Paris Sér. I Math. 314 (13) pp 1039– (1992)
[9] Kato K., J. Fac. Sci. Univ. Tokyo, Sec. IA 27 pp 603– (1983)
[10] DOI: 10.1090/conm/055.1/862638 · doi:10.1090/conm/055.1/862638
[11] DOI: 10.2307/2007029 · Zbl 0562.14011 · doi:10.2307/2007029
[12] DOI: 10.1007/BF01425486 · Zbl 0199.55501 · doi:10.1007/BF01425486
[13] DOI: 10.1007/s002220100193 · Zbl 1027.19004 · doi:10.1007/s002220100193
[14] DOI: 10.1007/BFb0067053 · Zbl 0292.18004 · doi:10.1007/BFb0067053
[15] DOI: 10.1023/A:1001734817103 · Zbl 0985.14003 · doi:10.1023/A:1001734817103
[16] DOI: 10.2307/1971109 · Zbl 0504.14006 · doi:10.2307/1971109
[17] Serre J-P., Corps Locaux (1962) · Zbl 0137.02601
[18] DOI: 10.1007/BF00533151 · Zbl 0721.14003 · doi:10.1007/BF00533151
[19] DOI: 10.1007/BF01457062 · Zbl 0573.14001 · doi:10.1007/BF01457062
[20] Suslin A. A., Izv. Math. 43 (6) pp 1394– (1979)
[21] DOI: 10.1007/BF01771011 · Zbl 0776.19003 · doi:10.1007/BF01771011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.