×

Quasi Cohen-Macaulay properties of local homomorphisms. (English) Zbl 1062.13502

From the paper: For a large class of local homomorphisms \(\varphi:R\to S\), including those of finite \(G\)-dimension studied by L. L. Avramov and H.-B. Foxby [Proc. Lond. Math. Soc., III. Ser. 15, No. 2, 241–270 (1997; Zbl 0901.13011)], we assign a new numerical invariant called the quasi Cohen-Macaulay defect of \(\varphi\).
Definition. Let \(\varphi:R\to S\) be a local homomorphism. If the dualizing complexes \(D^R\) and \(D^S\) exist, \(D^\varphi=:{\mathbf R} \text{Hom}_R(D^R,D^S).\)
Definition. Let \(\varphi\) be a local homomorphism of finite Gorenstein dimension (\(G\)-dimension). The quasi dimension of \(\varphi\), denoted \({\mathbf q}\, \text{dim}\,\varphi\), is defined as \({\mathbf q}\,\text{dim}\,\varphi=\sup D^{\widehat\varphi}\), and the quasi Cohen-Macaulay defect of \(\varphi\), denoted \({\mathbf q}\text{cmd}\,\varphi\), is defined as \({\mathbf q}\text{cmd}\,\varphi= \text{amp}\,D^{\widehat \varphi}\). Here \(^\wedge\) means completion and for an \(R\)-complex \(X\): \(\sup X=\sup\{i\in\mathbb{Z}\mid H_i(X)\neq 0\}\), \(\inf X=\inf\{i\in\mathbb{Z}\mid H_i(X)\neq 0\}\) and \(\text{amp}\,X=\sup X-\inf X\).
A local homomorphism is called quasi Cohen-Macaulay if it is of finite \(G\)-dimension and has trivial quasi Cohen-Macaulay defect. We show among other things the following:
Ascent-descent theorem. Let \(\varphi:R\to S\) be a local homomorphism.
(A) If \(R\) is Cohen-Macaulay and \(\varphi\) is quasi Cohen-Macaulay, then \(S\) is Cohen-Macaulay.
(D) If \(S\) is Cohen-Macaulay and \(G\)-dim\(\varphi\) is finite, then \(\varphi\) is quasi Cohen-Macaulay.
If, furthermore, the map of spectra Spec\(\widehat S\to\text{Spec}\,\widehat R\) is surjective, one also has:
\((\text{D}')\) If \(S\) is Cohen-Macaulay and \(G\)-dim\(\varphi\) is finite, then \(\varphi\) is quasi Cohen-Macaulay, and \(R\) is Cohen-Macaulay.

MSC:

13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
13C14 Cohen-Macaulay modules
13B10 Morphisms of commutative rings

Citations:

Zbl 0901.13011
Full Text: DOI

References:

[1] Apassov, D., Almost finite modules, Comm. Algebra, 27, 919-931 (1999) · Zbl 0922.13012
[2] Auslander, M.; Bridger, M., Stable module theory, Mem. Amer. Math Soc., 94 (1969) · Zbl 0204.36402
[3] Avramov, L. L.; Foxby, H.-B., Homological dimensions of unbounded complexes, J. Pure. Appl. Algebra, 71, 129-155 (1991) · Zbl 0737.16002
[4] Avramov, L. L.; Foxby, H.-B., Cohen-Macaulay properties of ring homomorphisms, Adv. Math., 133, 54-95 (1998) · Zbl 0935.13008
[5] L. L. Avramov, and, H.-B. Foxby, Cohen-Macaulay properties of ring homomorphisms, unpublished.; L. L. Avramov, and, H.-B. Foxby, Cohen-Macaulay properties of ring homomorphisms, unpublished. · Zbl 0935.13008
[6] Avramov, L. L.; Foxby, H.-B., Locally Gorenstein homomorphisms, Amer. J. Math., 114, 1007-1047 (1992) · Zbl 0769.13007
[7] L. L. Avramov and H.-B. Foxby, Grothendieck’s localization problem, in; L. L. Avramov and H.-B. Foxby, Grothendieck’s localization problem, in
[8] Avramov, L. L.; Foxby, H.-B., Ring homomorphisms and finite Gorenstein dimension, Proc. London Math. Soc., 75, 241-270 (1997) · Zbl 0901.13011
[9] L. L. Avramov, and, H.-B. Foxby, Codimension and finite projective dimension, unpublished.; L. L. Avramov, and, H.-B. Foxby, Codimension and finite projective dimension, unpublished.
[10] Avramov, L. L.; Foxby, H.-B.; Halperin, S., Descent and ascent of local properties along homomorphisms of finite flat dimension, J. Pure Appl. Algebra, 38, 167-185 (1985) · Zbl 0603.13007
[11] Avramov, L. L.; Foxby, H.-B.; Herzog, B., Structure of local homomorphisms, J. Algebra, 164, 124-145 (1994) · Zbl 0798.13002
[12] Bass, H., On the ubiquity of Gorenstein rings, Math. Z., 82, 8-28 (1963) · Zbl 0112.26604
[13] L. W. Christensen, Gorenstein dimensions, Master thesis, Københavns Universitet, 1996.; L. W. Christensen, Gorenstein dimensions, Master thesis, Københavns Universitet, 1996. · Zbl 0965.13010
[14] L. W. Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc, to appear.; L. W. Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc, to appear. · Zbl 0969.13006
[15] H.-B. Foxby, Hyperhomological algebra and commutative rings, Københavns Universitet, 1996.; H.-B. Foxby, Hyperhomological algebra and commutative rings, Københavns Universitet, 1996.
[16] Foxby, H.-B., Isomorphisms between complexes with applications to the homological theory of modules, Math. Scand., 40, 5-19 (1997) · Zbl 0356.13004
[17] H.-B. Foxby, Bounded complexes of flat modules, J. Pure Appl. Algebra15, 149-172.; H.-B. Foxby, Bounded complexes of flat modules, J. Pure Appl. Algebra15, 149-172. · Zbl 0411.13006
[18] Foxby, H.-B., Quasi-perfect modules over Cohen-Macaulay rings, Math. Nachr., 66, 103-110 (1975) · Zbl 0324.13008
[19] Deleted in proof.; Deleted in proof.
[20] Grothendieck, A., Éléments de géométrie algébrique IV. Étude local des schémas et des morphismes de schémas, Inst. Hautes Études Sci. Publ. Math., 20, 24, 28, 32 (1964-1967) · Zbl 0135.39701
[21] Hartshorne, R., Residues and duality. Residues and duality, Lecture Notes in Mathematics, 20 (1971), Springer: Springer Berlin
[22] Jørgensen, P., Gorenstein homomorphisms of noncommutative rings, J. Algebra, 211, 240-267 (1999) · Zbl 0926.16036
[23] Matsumura, H., Commutative Ring Theory (1986), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0603.13001
[24] McAdam, S.; Ratliff, L. J., Semi-local taut rings, Indiana Univ. Math. J., 26, 73-79 (1977) · Zbl 0324.13009
[25] Ogoma, T., Non-catenary pseudo-geometric local rings, Jpn. J. Math., 6, 147-163 (1980) · Zbl 0456.13005
[26] Ratliff, L. J., Catenary rings and the altitude formula, Amer. J. Math., 94, 458-466 (1972) · Zbl 0248.13014
[27] Spaltenstein, N., Resolutions of unbounded complexes, Composito Math., 65, 121-154 (1988) · Zbl 0636.18006
[28] Weibel, C. A., An Introduction to Homological Algebra (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.