×

Upwinding sources at interfaces in conservation laws. (English) Zbl 1061.65080

Summary: Hyperbolic conservation laws with source terms arise in many applications, especially as a model for geophysical flows because of the gravity, and their numerical approximation leads to specific difficulties. In the context of finite-volume schemes, many authors have proposed to upwind sources at interfaces, the U.S.I. method, while a cell-centered treatment seems more natural. This note gives a general mathematical formalism for such schemes. We define consistency and give a stability condition for the U.S.I. method. We relate the notion of consistency to the “well-balanced” property, but its stability remains open, and we also study second-order approximations, as well as error estimates. The general case of a nonuniform spatial mesh is particularly interesting, motivated by two-dimensional problems set on unstructured grids.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
Full Text: DOI

References:

[1] Perthame, B.; Simeoni, C., A kinetic scheme for the Saint-Venant system with a source term, Calcolo, 38, 4, 201-231 (2001) · Zbl 1008.65066
[2] Katsaounis, Th; Simeoni, C., Second order approximation of the viscous Saint-Venant system and comparison with experiments, (Hou, T.; Tadmor, E., Hyperbolic Problems: Theory, Numerics, Applications, (HYP2002 (2003), Springer) · Zbl 1134.76397
[3] Bouchut, F.; Perthame, B., Kružkov’s estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc., 350, 7, 2847-2870 (1998) · Zbl 0955.65069
[4] Eymard, R.; Gallouet, T.; Herbin, R., (Ciarlet, P. G.; Lions, J. L., Finite Volume Methods, Handbook of Numerical Analysis, Volume VIII (2000), North-Holland: North-Holland Amsterdam) · Zbl 1060.76075
[5] Godlewski, E.; Raviart, P. A., (Hyperbolic Systems of Conservation Laws, Mathématiques & Applications, Volume 3/4 (1991), Ellipses: Ellipses Paris) · Zbl 0768.35059
[6] Osher, S., Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal., 21, 2, 217-235 (1984) · Zbl 0592.65069
[7] Kružkov, S. N., First order quasilinear equations in several independent space variables, Math. USSR Sb., 10, 217-243 (1970) · Zbl 0215.16203
[8] Roe, P. L., Upwind differencing schemes for hyperbolic conservation laws with source terms, (Carasso, C.; Raviart, P. A.; Serre, D., Nonlinear Hyperbolic Problems, Lecture Notes in Math., Volume 1270 (1987), Springer-Verlag: Springer-Verlag Berlin), 41-51 · Zbl 0626.65086
[9] BenArtzi, M., The generalized Riemann problem for reactive flows, J. Comp. Phys., 81, 70-101 (1989) · Zbl 0668.76080
[10] Bereux, F.; Sainsaulieu, L., A Roe-type Riemann solver for hyperbolic systems with relaxation based on time-dependent wave decomposition, Numer. Math., 77, 2, 143-185 (1997) · Zbl 0873.35047
[11] Cargo, P.; LeRoux, A. Y., Un schema équilibre adapté au modèle d’atmosphère avec termes de gravité, C.R. Acad. Sci. Paris Sér. I Math, 318, 1, 73-76 (1994) · Zbl 0805.76063
[12] Gosse, L., A priori error estimate for a well-balanced scheme designed for inhomogeneous scalar conservation laws, C.R. Acad. Sci. Paris Sér. I Math., 327, 5, 467-472 (1998) · Zbl 0909.65059
[13] Greenberg, J. M.; LeRoux, A. Y., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33, 1-16 (1996) · Zbl 0876.65064
[14] Gallouët, T.; Hérard, J. M.; Seguin, N., Some approximate Godunov schemes to compute shallow-water equations with topography, AIAA-2001 (2000)
[15] LeVêque, R. J., Balancing source terms and flux gradients in high-resolution Godunov methods: The quasisteady wave-propagation algorithm, J. Comput. Phys., 146, 1, 346-365 (1998) · Zbl 0931.76059
[16] Botchorishvili, R.; Perthame, B.; Vasseur, A., Equilibrium schemes for scalar conservation laws with stiff sources, Math. Comp., 72, 241, 157-191 (2003) · Zbl 1017.65070
[17] Jin, S., A steady-state capturing method for hyperbolic systems with geometrical source terms, M2AN Math. Model. Numer. Anal., 35, 4, 631-645 (2001) · Zbl 1001.35083
[18] Kurganov, A.; Doron, L., Central-upwind schemes for the Saint-Venant system, M2AN Math. Model. Numer. Anal., 36, 3, 397-425 (2002) · Zbl 1137.65398
[19] Botta, N.; Klein, R.; Langenberg, S.; Liitzenkirchen, S., Well balanced finite volume methods for nearly hydrostatic flows (2002), (preprint) · Zbl 1109.86304
[20] Godlewski, E.; Raviart, P. A., Numerical approximation of hyperbolic systems of conservation laws, (Applied Mathematical Sciences, Volume 118 (1996), Springer-Verlag) · Zbl 1155.76374
[21] Lax, P. D.; Wendroff, B., Systems of conservations laws, Comm. Pure Appl. Math., 13, 217-237 (1960) · Zbl 0152.44802
[22] Perthame, B.; Simeoni, C., Convergence of the upwind interface source method for hyperbolic conservation laws, (Hou, T.; Tadmor, E., Hyperbolic Problems: Theory, Numerics, Applications, (HYP2002) (2003), Springer) · Zbl 1008.65066
[23] Sanders, R., On convergence of monotone finite difference schemes with variable spatial differencing, Math. Comp., 40, 499-518 (1983)
[24] Perthame, B., Kinetic Formulation of Conservation Laws (2002), Oxford University Press · Zbl 1030.35002
[25] Gosse, L.; LeRoux, A. Y., A well-balanced scheme designed for inhomogeneous scalar conservation laws, C.R. Acad. Sci. Paris Sér. I Math., 323, 5, 543-546 (1996) · Zbl 0858.65091
[26] Bouchut, F., An introduction to finite volume methods for hyperbolic systems of conservation laws with source, (Problèmes Nonlinéaires Appliqués: Ecoulements peu Profonds & Surface Libre, Écoles CEA-EDFINRIA (Octobre 2002)), 44-49
[27] Harten, A.; Osher, S., Uniformly high-order accurate nonoscillatory schemes I, SIAM J. Numer. Anal., 24, 2, 279-309 (1987) · Zbl 0627.65102
[28] Shu, C. W., High order ENO and WEND schemes for computational fluid dynamics. High-order methods for computational physics, (Lect. Notes Comput. Sci. Eng., Volume 9 (1999), Springer: Springer Berlin), 439-582 · Zbl 0937.76044
[29] Katsaounis, Th; Simeoni, C., First and second order error estimates for the upwind interface source method, (Hou, T.; Tadmor, E., Hyperbolic Problems: Theory, Numerics, Applications, (HYP2002) (2003), Springer) · Zbl 1057.65058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.