×

Fuzzy geometric programming approach to a fuzzy machining economics model. (English) Zbl 1060.90086

Summary: Machining economics is an important function of the process planning activity for manufacturing products with high quality and low cost. The machining economics model usually contains a highly nonlinear objective function and equations that could be formulated as a geometric programming problem. The paper develops a solution method for deriving the fuzzy objective value of the fuzzy machining economics problem when some of the parameters in the problem are fuzzy numbers. A pair of geometric programs is formulated to calculate the lower and upper bounds of the unit production cost at possibility level \(\alpha\). With the ability to calculate the fuzzy objective value developed, it might help lead to a more realistic modelling effort. The developed methodology can also be applied to other engineering design problems with fuzzy numbers.

MSC:

90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
Full Text: DOI

References:

[1] DOI: 10.1080/00207549308956849 · doi:10.1080/00207549308956849
[2] Beightler CS, Applied Geometric Programming (1976)
[3] DOI: 10.1115/1.3427835 · doi:10.1115/1.3427835
[4] Childs T, Metal Machining: Theory and Applications (2000)
[5] Da AJ, ASME 2 pp 703– (1995)
[6] Duffin RJ, Geometric Programming – Theory and Applications (1967)
[7] DOI: 10.1080/0020754021000024166 · Zbl 1064.90523 · doi:10.1080/0020754021000024166
[8] DOI: 10.1080/00207549108948056 · Zbl 0729.90530 · doi:10.1080/00207549108948056
[9] DOI: 10.1080/00207549408957022 · Zbl 0907.90170 · doi:10.1080/00207549408957022
[10] DOI: 10.1080/002075400411484 · doi:10.1080/002075400411484
[11] DOI: 10.1080/002075499191553 · Zbl 0939.90523 · doi:10.1080/002075499191553
[12] DOI: 10.1080/00207549108930090 · doi:10.1080/00207549108930090
[13] DOI: 10.1287/opre.37.5.805 · Zbl 0681.90048 · doi:10.1287/opre.37.5.805
[14] DOI: 10.1080/00207549008942872 · doi:10.1080/00207549008942872
[15] DOI: 10.1007/BF00123676 · doi:10.1007/BF00123676
[16] DOI: 10.1080/00207549308956832 · doi:10.1080/00207549308956832
[17] DOI: 10.1023/A:1013353515966 · Zbl 0996.90060 · doi:10.1023/A:1013353515966
[18] Philipson RH, Mathematical Programming 11 pp 116– (1979)
[19] DOI: 10.1080/002075497195083 · Zbl 0943.90582 · doi:10.1080/002075497195083
[20] DOI: 10.1080/00207540110081515 · Zbl 1060.90610 · doi:10.1080/00207540110081515
[21] DOI: 10.1023/A:1013500514075 · Zbl 0988.90021 · doi:10.1023/A:1013500514075
[22] DOI: 10.1016/S0925-5273(02)00255-4 · doi:10.1016/S0925-5273(02)00255-4
[23] DOI: 10.1080/00207549208948198 · doi:10.1080/00207549208948198
[24] DOI: 10.1080/00207540010010244 · Zbl 1060.90514 · doi:10.1080/00207540010010244
[25] DOI: 10.1016/S0890-6955(02)00037-8 · doi:10.1016/S0890-6955(02)00037-8
[26] DOI: 10.1016/0165-0114(78)90029-5 · Zbl 0377.04002 · doi:10.1016/0165-0114(78)90029-5
[27] Zimmermann HJ, Fuzzy Set Theory and Its Applications (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.