×

Viscoelastic behaviour of suspensions of rigid-rod like particles in turbulent channel flow. (English) Zbl 1060.76657

Summary: Dilute suspensions of rigid elongated particles show visco-elastic behaviour if the particles are small enough to be affected by Brownian motion. The visco-elastic behaviour of such suspensions is investigated in turbulent channel flow. A direct numerical simulation (DNS) of turbulent channel flow has been used to compute Lagrangian time traces of the velocity derivative tensor, as experienced by small inertia-free particles. Along these paths, the viscous and elastic stresses of ensembles of Brownian fibres are computed by a stochastic simulation based on the rheological theory of dilute suspensions of elongated particles and fibres in Newtonian solvents. Average and R.M.S. stresses are computed for various combinations of aspect ratio and Péclet number as a measure for the influence of the Brownian motion. It is found that stress levels as well as R.M.S. of stresses rise quickly with aspect ratio of the particles. The visco-elastic contribution to the total stress level can be as large as 30% for small Péclet numbers showing that elastic effects can indeed take place in suspensions of rigid particles.

MSC:

76T20 Suspensions
76F65 Direct numerical and large eddy simulation of turbulence
Full Text: DOI

References:

[1] Gyr, A.; Bewersdorff, H.-W., Drag Reduction of Turbulent Flows by Additives, Fluid Mech. Appl., vol. 32 (1995), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0973.76616
[2] de Gennes, P., Introduction to Polymer Dynamics (1990), Cambridge University Press
[3] Sreenivasan, K.; White, C., The onset of drag reduction by dilute polymer additives, and the maximum drag reduction asymptote, J. Fluid Mech., 409, 149-164 (2000) · Zbl 0959.76005
[4] Radin, I.; Zakin, J. L.; Patterson, G., Drag reduction in solid-fluid systems, AIChE J., 21, 358-371 (1975)
[5] Kan, R. S., Drag reduction by particle addition, (Bushnell, D. M.; Hefner, J. N., Viscous Drag Reduction in Boundary Layers. Viscous Drag Reduction in Boundary Layers, Progr. Astron. & Aeron, vol. 123 (1990)), 433-456
[6] Moyls, A. L.; Sabersky, R. H., Heat transfer and friction coefficients for dilute suspensions of asbestos fibers, Int. J. Heat Mass Transfer, 21, 7-14 (1978)
[7] Virk, P.; Wagger, D., Aspects of mechanisms in type B drag reduction, (Gyr, A., Structure of Turbulence and Drag Reduction, IUTAM Symp. Zürich, Switzerland, 1989 (1990), Springer), 201-212
[8] Einstein, A., Eine neue Bestimmung der Moleküldimension, Ann. Phys., 19, 289-306 (1906) · JFM 37.0811.01
[9] Einstein, A., Berichtigung zu meiner Arbeit: “Eine neue Bestimmung der Moleküldimensionen”, Ann. Phys., 34, 591-592 (1911) · JFM 42.0855.04
[10] Jeffery, G., The motion of ellipsoidal particles immersed in a viscous fluid, Proc. Roy. Soc. London Ser. A, 102, 161-179 (1922) · JFM 49.0748.02
[11] Giesekus, H., Elasto-viskose Flüssigkeiten, für die in stationären Schichtströmungen sämtliche Normalspannungskomponenten verschieden gros̈ sind, Rheol. Acta, 2, 50-62 (1962)
[12] Batchelor, G., The stress system in a suspension of force-free particles, J. Fluid Mech., 41, 545-570 (1970) · Zbl 0193.25702
[13] Brenner, H., Rheology of two-phase systems, Annu. Rev. Fluid Mech., 2, 137-176 (1970)
[14] Brenner, H., Suspension rheology in the presence of rotary brownian motion and external couples: elongational flow of dilute suspensions, Chem. Engrg. Sci., 27, 1069-1107 (1972)
[15] Brenner, H., Rheology of a dilute suspension of axisymmetric Brownian particles, Int. J. Multiphase Flow, 1, 2, 195-341 (1974) · Zbl 0379.76085
[16] Leal, L. G.; Hinch, E. J., The rheology of a suspension of nearly spherical particles subjects to brownian rotations, J. Fluid Mech., 55, 745-765 (1972) · Zbl 0249.76059
[17] Hinch, E.; Leal, L., The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles, J. Fluid Mech., 52, 683-712 (1972) · Zbl 0246.76105
[18] Hinch, E.; Leal, L., Constitutive equations in suspension mechanics. Part 1. General formulation, J. Fluid Mech., 71, 3, 481-495 (1975) · Zbl 0315.76057
[19] Hinch, E.; Leal, L., Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations, J. Fluid Mech., 76, 1, 187-208 (1976) · Zbl 0352.76005
[20] Okagawa, A.; Cox, R.; Mason, S., The kinetics of flowing disperions. VI. Transient orientation and rheological phenomena of rods and discs in shear flow, J. Colloid Interface Sci., 45, 2, 303-329 (1973)
[21] Frattini, P.; Fuller, G., Rheo-optical studies of the effect of weak Brownian rotations in sheared suspensions, J. Fluid Mech., 168, 119-150 (1986)
[22] Stover, C.; Koch, D.; Cohen, C., Observations of fibre orientation in simple shear flow of semi-dilute suspensions, J. Fluid Mech., 238, 277-296 (1992)
[23] Szeri, A.; Leal, L., A new computational method for the solution of flow problems of microstructured fluids. Part 1. Theory, J. Fluid Mech., 242, 549-576 (1992) · Zbl 0789.76005
[24] Szeri, A.; Leal, L., A new computational method for the solution of flow problems of microstructured fluids. Part 2. Inhomogeneous shear flow of a suspension, J. Fluid Mech., 262, 171-204 (1994) · Zbl 0804.76004
[25] den Toonder, J.; Hulsen, M.; Kuiken, G.; Nieuwstadt, F., Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments, J. Fluid Mech., 337, 193-231 (1997)
[26] Manhart, M.; Friedrich, R., Direct numerical simulation of turbulent channel flow of a viscous anisotropic fluid, (Bungartz, H.-J.; Hoppe, R.; Zenger, C., Lectures on Applied Mathematics, Proceedings of the symposium organized by the SFB 438 “Mathematical Modelling, Simulation and Intelligent Systems” on the occasion of Karl-Heinz Hoffmann’s 60th birthday, Munich, June 30-July 1, 1999 (1999), Springer: Springer Heidelberg), 277-296 · Zbl 1050.76547
[27] Bird, R.; Curtiss, C.; Armstrong, R.; Hassager, O., Kinetic Theory, Dynamics of Polymeric Liquids, vol. 2 (1987), Wiley
[28] Sureshkumar, R.; Beris, A.; Handler, R., Direct numerical simulation of the turbulent channel flow of a polymer solution, Phys. Fluids, 9, 3, 743-755 (1997)
[29] Dimitropoulos, C.; Sureshkumar, R.; Beris, A., Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of the variation of rheological parameters, J. Non-Newtonian Fluid Mech., 79, 433-468 (1998) · Zbl 0960.76057
[30] de Angelis, E.; Casciola, C. M.; Piva, R., Lagrangian tracking of polymers in wall turbulence, (Castro, I. P.; Hancock, P. E.; Thomas, T. G., Advances in Turbulence IX, Ninth European Turbulence Conference, CIMNE, Barcelona (2002)), 373-376
[31] de Angelis, E.; Casciola, C. M.; Piva, R., DNS of wall turbulence: dilute polymers and self-sustaining mechanisms, Comput. Fluids, 31, 495-507 (2002) · Zbl 1075.76556
[32] Ptasinski, P. K.; Nieuwstadt, F. T.M.; Boersma, B. J., Direct numerical simulations of viscoelastic turbulent channel flow close to maximum drag reduction, (Castro, I. P.; Hancock, P. E.; Thomas, T. G., Advances in Turbulence IX, Ninth European Turbulence Conference, CIMNE, Barcelona (2002)), 89-92
[33] M. Manhart, Rheology of suspensions of rigid-rod like particles in turbulent channel flow, J. Non-Newtonian Fluid Mech. (2003) in press; M. Manhart, Rheology of suspensions of rigid-rod like particles in turbulent channel flow, J. Non-Newtonian Fluid Mech. (2003) in press · Zbl 1065.76191
[34] Öttinger, H., Stochastic Processes in Polymeric Fluids (1996), Springer: Springer Berlin · Zbl 0995.60098
[35] Doi, M.; Edwards, S., The Theory of Polymer Dynamics, Internat. Ser. Monographs Phys., vol. 73 (1986), Oxford University Press
[36] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 745-762 (1968) · Zbl 0198.50103
[37] Temam, R., On an approximate solution of the Navier-Stokes equations by the method of fractional steps. Part 1, Arch. Rational Mech. Anal., 32, 135-153 (1969) · Zbl 0195.46001
[38] Harlow, F. H.; Welsh, J. E., Numerical calculation of time-dependent viscous incompressible flow with free surface, Phys. Fluids, 8, 2182-2189 (1965) · Zbl 1180.76043
[39] Meri, A.; Wengle, H.; Dejoan, A. V.E.; Schiestel, R., Applications of a 4th-order Hermitian scheme for non-equidistant grids to LES and DNS of incompressible fluid flow, (Hirschel, E., Notes Numer. Fluid Mech., vol. 66 (1998), Vieweg: Vieweg Braunschweig), 382-406
[40] Kim, J.; Moin, P.; Moser, R., Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., 177, 133-166 (1987) · Zbl 0616.76071
[41] Hinch, E. J., Mechanical models of dilute polymer solutions in strong flows, Phys. Fluids, 20, 10, S22-S30 (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.