×

Hidden algebras of the (super) Calogero and Sutherland models. (English) Zbl 1056.81515

Summary: We propose to parametrize the configuration space of one-dimensional quantum systems of \(N\) identical particles by the elementary symmetric polynomials of bosonic and fermionic coordinates. It is shown that in this parametrization the Hamiltonians of the \(A_N\), \(BC_N\), \(B_N\), \(C_N\) and \(D_N\) Calogero and Sutherland models, as well as their supersymmetric generalizations, can be expressed – for arbitrary values of the coupling constants – as quadratic polynomials in the generators of a Borel subalgebra of the Lie algebra \(\text{gl}(N+1)\) or the Lie superalgebra \(\text{gl}(N+1|N)\) for the supersymmetric case. These algebras are realized by first order differential operators. This fact establishes the exact solvability of the models according to the general definition given by Turbiner, and implies that the Calogero and Jack-Sutherland polynomials, as well as their supersymmetric generalizations, are related to finite-dimensional irreducible representations of the Lie algebra \(\text{gl}(N+1)\) and the Lie superalgebra \(\text{gl}(N+1|N)\).

MSC:

81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
17B81 Applications of Lie (super)algebras to physics, etc.
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
81V70 Many-body theory; quantum Hall effect

References:

[1] DOI: 10.1063/1.1664820 · doi:10.1063/1.1664820
[2] DOI: 10.1063/1.1664820 · doi:10.1063/1.1664820
[3] DOI: 10.1063/1.1664820 · doi:10.1063/1.1664820
[4] DOI: 10.1103/PhysRevA.5.1372 · doi:10.1103/PhysRevA.5.1372
[5] DOI: 10.1103/PhysRevA.5.1372 · doi:10.1103/PhysRevA.5.1372
[6] DOI: 10.1016/0550-3213(90)90364-J · doi:10.1016/0550-3213(90)90364-J
[7] DOI: 10.1016/0550-3213(93)90315-G · Zbl 0941.81606 · doi:10.1016/0550-3213(93)90315-G
[8] DOI: 10.1103/PhysRevLett.70.4029 · Zbl 1050.81543 · doi:10.1103/PhysRevLett.70.4029
[9] B. S. Shastry and B. Sutherland, cond-mat/9212029. · Zbl 1050.81543 · doi:10.1103/PhysRevLett.70.4029
[10] DOI: 10.1007/BF00420664 · Zbl 0366.58005 · doi:10.1007/BF00420664
[11] DOI: 10.1002/cpa.3160310405 · Zbl 0368.58008 · doi:10.1002/cpa.3160310405
[12] DOI: 10.1016/0370-1573(81)90023-5 · doi:10.1016/0370-1573(81)90023-5
[13] DOI: 10.1016/0370-1573(83)90018-2 · doi:10.1016/0370-1573(83)90018-2
[14] DOI: 10.1016/0550-3213(94)00499-5 · Zbl 1052.81607 · doi:10.1016/0550-3213(94)00499-5
[15] A. Gorsky and N. Nekrasov, hep-th/9304047; · Zbl 1052.81607 · doi:10.1016/0550-3213(94)00499-5
[16] DOI: 10.1016/0550-3213(94)00499-5 · Zbl 1052.81607 · doi:10.1016/0550-3213(94)00499-5
[17] A. Gorsky and N. Nekrasov, hep-th/9401017. · Zbl 1052.81607 · doi:10.1016/0550-3213(94)00499-5
[18] hep-th/9409068.
[19] DOI: 10.1142/S0217732395002374 · Zbl 1020.37577 · doi:10.1142/S0217732395002374
[20] W. Rühl and A. Turbiner, hep-th/9506105. · Zbl 1020.37577 · doi:10.1142/S0217732395002374
[21] DOI: 10.1016/0370-2693(92)90166-2 · doi:10.1016/0370-2693(92)90166-2
[22] L. Brink, T. H. Hansson, and M. A. Vasiliev, hep-th/9206049. · doi:10.1016/0370-2693(92)90166-2
[23] DOI: 10.1007/BF02099456 · Zbl 0859.35103 · doi:10.1007/BF02099456
[24] DOI: 10.1209/0295-5075/30/5/009 · Zbl 0895.58060 · doi:10.1209/0295-5075/30/5/009
[25] D. Bernard, V. Pasquier, and D. Serban, hep-th/9501044. · Zbl 0895.58060 · doi:10.1209/0295-5075/30/5/009
[26] DOI: 10.1088/0305-4470/30/12/012 · Zbl 0943.22019 · doi:10.1088/0305-4470/30/12/012
[27] D. Serban, hep-th/9701118. · Zbl 0943.22019 · doi:10.1088/0305-4470/30/12/012
[28] DOI: 10.1007/BF02099610 · Zbl 0842.17045 · doi:10.1007/BF02099610
[29] H. Awata, Y. Matsuo, S. Odake, and J. Shiraishi, hep-th/9411053; · Zbl 0842.17045 · doi:10.1007/BF02099610
[30] DOI: 10.1007/BF02099610 · Zbl 0842.17045 · doi:10.1007/BF02099610
[31] H. Awata, Y. Matsuo, S. Odake, and J. Shiraishi, hep-th/; · Zbl 0842.17045 · doi:10.1007/BF02099610
[32] DOI: 10.1007/BF02099610 · Zbl 0842.17045 · doi:10.1007/BF02099610
[33] DOI: 10.1016/0001-8708(89)90015-7 · Zbl 0743.05072 · doi:10.1016/0001-8708(89)90015-7
[34] DOI: 10.1007/BF01030108 · doi:10.1007/BF01030108
[35] DOI: 10.1063/1.1666826 · doi:10.1063/1.1666826
[36] DOI: 10.1103/PhysRevA.55.3931 · doi:10.1103/PhysRevA.55.3931
[37] DOI: 10.1016/0370-2693(93)90395-X · doi:10.1016/0370-2693(93)90395-X
[38] DOI: 10.1007/BF01466727 · Zbl 0683.35063 · doi:10.1007/BF01466727
[39] DOI: 10.1142/S0217751X90000374 · Zbl 0709.58048 · doi:10.1142/S0217751X90000374
[40] DOI: 10.1142/S0217732396001971 · Zbl 1022.81817 · doi:10.1142/S0217732396001971
[41] A. Minzoni, M. Rosenbaum, and A. Turbiner, hep-th/9606092. · Zbl 1022.81817 · doi:10.1142/S0217732396001971
[42] DOI: 10.1088/0305-4470/22/1/001 · Zbl 0662.34031 · doi:10.1088/0305-4470/22/1/001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.